
Freecell Solver - Architecture Document

Shlomi Fish <shlomif@shlomifish.org>

Freecell Solver - Architecture Document
by Shlomi Fish

This is version 0.5.0
Copyright © 2002 Shlomi Fish

This work is licensed under the Creative Commons Attribution 3.0 Unported License [http://creativecommons.org/
licenses/by/3.0/] (or at your option a greater version of it). Whatever source code is provided here is licensed under
the Expat variant of the MIT License [https://en.wikipedia.org/wiki/MIT_License].

It was written by Shlomi Fish [http://www.shlomifish.org/], and one should attribute a derived work to him, while
linking to his homepage. Please see my interpretation of the licenses [http://www.shlomifish.org/meta/copyrights/].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/MIT_License
http://www.shlomifish.org/
http://www.shlomifish.org/
http://www.shlomifish.org/meta/copyrights/
http://www.shlomifish.org/meta/copyrights/

Table of Contents
1. Introduction .. 1
2. Coding Conventions .. 2

Bottom-Up Design and Evolution .. 2
Using the gnu11 C dialect and POSIX ... 2
Strict Adherence to the ANSI C Standard Library .. 2
Namespace Purity ... 2
Order of Trade-offs in the Design of the Code ... 2
No Global or Static Variables ... 3
Separation of Internals from User and Application Programmer Interfaces 3

3. Overview of the Code .. 4
Overview of the Program ... 4
Overview of the Utility Modules ... 4

app_str.c .. 4
rand.h ... 4
fcs_hash.c .. 4
fcs_dm.c .. 5
alloc.c ... 5
cl_chop.c ... 5
pqueue.c .. 5

Overview of the Core Modules ... 5
card.c .. 5
state.h ... 6
state.c ... 6
move.c and move.h ... 6
preset.c .. 6
freecell.c .. 6
simpsim.c .. 6
check_and_add_state.c ... 6
scans.c .. 7
instance.c ... 7
lib.c .. 7
cmd_line.c ... 7

Deprecated Modules .. 7
lookup2.c ... 7
fcs_isa.c .. 7

4. Interesting Techniques Used throughout the Code ... 8
State Representation .. 8
Indirect Stack States Algorithms .. 8
Extended States .. 8
The States Graph and its Use .. 9
The Life-Cycle of a freecell_solver_instance_t ... 9
Compact Allocation ... 9

5. Software Configuration Management .. 11
Game Presets Configuration .. 11
Generating the Site .. 11
The pkg-config File ... 11
The Win32 Binary .. 11

6. Terminology ... 12
Terms used throughout the Code ... 12

iii

Chapter 1. Introduction
This is the architecture document of Freecell Solver. Its purpose is to serve as an introduction to the code,
so future contributors can understand it and work on it.

This document does not aim to cover every detail of the application. Such details are supposed to
be documented within the comments of the code. (let me know if there is something there you don't
understand, and I'll add a comment) Instead, it should provide an overview of the code and cover the main
caveats one would encounter when trying to understand it.

This document covers the Freecell Solver 2.8.x architecture, and will be updated to future versions.

1

Chapter 2. Coding Conventions
Bottom-Up Design and Evolution

Freecell Solver was designed bottom-up: first by writing functions to input cards and then to handle states
and finally the algorithm itself. I find that bottom-up design (as evangelised by Paul Graham and others
[http://www.paulgraham.com/onlisp.html]) - start by writing small utility functions and classes and then
integrate into a grander scheme, has been a guiding principle when working on Freecell Solver.

Freecell Solver has many utility classes, and has also been coded incrementally. I also find bottom-up
design more natural.

Using the gnu11 C dialect and POSIX
Freecell Solver is written using the -std=gnu11 C dialect and can be compiled using GCC and
compatible compilers.

Strict Adherence to the ANSI C Standard
Library

Freecell Solver is dependant on the ANSI C and POSIX Standard Library as defined by the standard and on
that library alone. The core FCS code is not dependant on glib, apr or any other abstraction or encapsulation
libraries of this kind.

Freecell Solver can optionally be compiled to make use of some binary trees and hash implementations
found in external libraries. This serves as a drop-in replacement for its internal hash implementation, which
was shown to usually give a better performance.

Note that a lot of the logic provided by such libraries is implemented internally in Freecell Solver.

Namespace Purity
All the global symbols of the Freecell Solver modules are prefixed with fc_solve_ prefix. (See this post
to the fc-solve-discuss mailing list [https://groups.yahoo.com/neo/groups/fc-solve-discuss/conversations/
topics/842] about why we converted away from freecell_solver_. Some macros supplied to the user
are prefixed with the fcs_ prefix for convenience. The API functions in turn are prefixed with
freecell_solver_user_, in order to not break compatibility with older versions of the library.

Order of Trade-offs in the Design of the Code
Freecell Solver has the following trade offs in the design of the code:

1. Modularity - the code should be as generic as possible and allow for maximal flexibility. The user
should be able to configure the library as he pleases.

2. Speed - the code should be optimised for speed. Many times in the code, it was made a bit less
comprehensible to gain speed, and many times extra techniques are implemented to ensure this goal.

3. Memory Consumption - should be reduced as much as possible. A reduced memory consumption
usually leads to better speed, because there are less cache misses this way.

2

http://www.paulgraham.com/onlisp.html
http://www.paulgraham.com/onlisp.html
https://groups.yahoo.com/neo/groups/fc-solve-discuss/conversations/topics/842
https://groups.yahoo.com/neo/groups/fc-solve-discuss/conversations/topics/842
https://groups.yahoo.com/neo/groups/fc-solve-discuss/conversations/topics/842
https://groups.yahoo.com/neo/groups/fc-solve-discuss/conversations/topics/842

Coding Conventions

4. Smart Algorithms - generally, algorithms with a low complexity and such that give advantage to the
code are implemented.

Note that these trade-offs are subject to the programmer's whims, and many times, one was a bit sacrificed
to satisfy the other.

No Global or Static Variables
Freecell Solver does not use global variables (except for constants) or such that are statically defined within
a function. All the non-temporary variables are present within structs, so they can easily be instantiated.

One should note that several distinct instances of the solving algorithm can be instantiated and made to
run side by side or alternately.

Separation of Internals from User and
Application Programmer Interfaces

FCS makes a clear distinction between the internals of the program, that are subject to change from version
to version, and between the interface supplied to the user or the application programmer. All the modules
starting from instance.c and below are the internals of the program.

lib.c contains the API functions used by the programmer. cmd_line.c is an API to analyse a
Freecell Solver command line. It itself uses only the lib.c API. It provides a more flexible interface for
configuring Freecell Solver, even to the application programmer.

main.c , test_multi_parallel.c , threaded_range_solver.c , and
fc_pro_range_solver.c are command line programs that use the command line interface and
programmers interface. Others can be written (and have been written).

3

Chapter 3. Overview of the Code

Overview of the Program
Freecell Solver solves boards by using Depth-First Search [https://en.wikipedia.org/wiki/Depth-
first_search] or Best-First-Search [https://en.wikipedia.org/wiki/Best-first_search] scans starting from the
initial board. It has a collection of the states, and constructs a tree of the states descending from each state
to its "parent". A parent state means the state in which from which it was discovered.

Freecell Solver can run several "move functions" on each state. Each move generates a list of derived states.
Some of the tests are Freecell meta-move ones, some are Freecell atomic move ones, and the others are
Simple Simon meta-move ones. The order of the tests can be specified at the command line, and tests can
be grouped, and the order of checking of the tests within a group will be determined by a special callback.

To perform the scans themselves Freecell Solver distinguishes between soft threads, hard threads and
instances. An instance is a collection of states and an initial board to explore. Each instance may have
several hard threads and each hard thread may have several soft threads. A hard thread is something that
would likely be put in a system thread. It contains such resources, that a collision between them among
several hard threads running in parallel is undesirable. Nevertheless, every hard thread can access the
resources allocated by other hard threads, should it encounter them in its scan.

A soft thread is a singular scan. It performs a scan for a certain number of iterations, at which point the
hard thread switches to a different soft thread.

Overview of the Utility Modules

app_str.c

This file contains a utility class that appends sprintf'ed output to a dynamically allocated buffer while
growing the buffer if necessary.

It is still conceivable that the sprintf will generate a long enough string that will cause a buffer overflow.
However, since the class is only used to render states into strings, and the margin allowed for the buffer
is long enough, this cannot actually happen.

rand.h

Implements a random number generating class. The algorithm is identical to that of the Microsoft C Run-
Time Library (RTL), but the generator can be instantiated.

fcs_hash.c

An optimised hash implementations. This hash maps keys to values. It stores the hash function values next
to the keys, so two keys can be first compared with their hash values, before the costly full comparison is
done. It also uses a secondary hash to speed up the detection of two keys with identical primary hash values.

Not all the functions of the hash Abstract Data Type (ADT) are implemented here. Only these that need
to be used by Freecell Solver.

4

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Best-first_search
https://en.wikipedia.org/wiki/Best-first_search

Overview of the Code

fcs_dm.c
This module implements two functions - an advanced binary search one and a function to merge a
small sorted array into a larger sorted array. It was used until the newer hash or balanced binary
tree storage were implemented, and may still be used if FCS_STATE_STORAGE_INDIRECT or
FCS_STACK_STORAGE_INDIRECT are specified. 1

alloc.c
This module compactly allocates blocks of arbitrary length, usually used for dynamically allocated Freecell
columns. The blocks are allocated one after the other inside malloc()'ed memory segments that are thus
guaranteed to retain their position.

cl_chop.c
This module contains a class that implements a chopping of a string into arguments. This is done using a
subset of the UNIX Bourne shell functionality. Namely:

1. A backslash (\) makes the next character an actual such character.

2. A newline or a white-space separates a word.

3. A backslash at the end of the line continues the processing.

4. Double quotes (") wrap an argument that may contain white-space.

5. A pound sign (#) makes a comment that extends to the end of the line.

The code itself is very spaghetti-like but it is working.

pqueue.c
This module implements a priority queue as a binary heap. It is derived from Justin Heyes-Jones [http://
www.heyes-jones.com/astar.html] C++ code which he has kindly donated to Freecell Solver (while re-
licensing it under the public domain). Since then, the code has been converted to ANSI C , modified and
optimised.

This module is used by the Best-First-Search scan.

Overview of the Core Modules
Bottom-up

card.c
Elementary functions to convert cards to and from their string representations. The u and p within the code
stand for "user" and "perl" respectively, and mean user representation and internal C representation.

The first experimental version of Freecell Solver was written in Perl, and since then the naming convention
for this case persisted.

1 It is no longer recommended to use a sorted array as a state or stack storage, as they are much slower than using a hash or a balanced binary tree,
both in asymptotic complexity (O(n2))) and in average performance.

5

http://www.heyes-jones.com/astar.html
http://www.heyes-jones.com/astar.html
http://www.heyes-jones.com/astar.html

Overview of the Code

state.h
This is a header file, but it can be considered a module due to the large amount of logic that it
implements. It defines fcs_state_t (which represents a complete layout of the Freecell board) and of
fcs_state_extra_info_t. It contains many macros for manipulating states and cards. (all of them should
behave like function calls)

The fcs_state_extra_info_t contains the real positions of the stacks and freecells (refer to (SECTION_REF
Canonisation and Normalisation)) and other things that the system uses but don't uniquely identify the
state in the state collection.

state.c
This file contains various functions for manipulating states. Among the many things implemented in it are
state canonisation, state duplicating, state comparison and converting to and from string format.

move.c and move.h
This module contains routines for handling individual moves (freecell → stack, stack → freecell, stack →
stack) and various special moves as well as entire move stacks, which contain a sequence of moves to be
played between two intermediate states.

preset.c
This file manages the presets: configurations of stacks number, freecells number, decks number, and the
other parameters that define how a game is played. A preset is a variant of Solitaire such as Freecell,
Baker's Game, Simple Simon, Good Measure, etc. Many of them are categorised in PySol under different
categories than the Freecell category. Moreover, some "Freecell-like" games such as Penguin are not
supported by Freecell Solver yet.

The routines in the file enable applying a preset to an instance (by its name), applying a preset to an
instance by a pointer to it, etc. It is also directly used by lib.c to maintain consistency across a sequence
of consecutive instances.

freecell.c
This module contains move functions for Freecell tests. A move function receives an origin state and tries
to deduce if moves of a certain kind are possible. It fills in a derived states list.

This code uses some macros defined in meta_move_funcs_helpers.h. It contains both meta-move
tests and atomic moves ones.

simpsim.c
This file is similar in spirit to freecell.c only it contains Simple Simon [http://en.wikipedia.org/wiki/
Simple_Simon_(solitaire)] move functions.

check_and_add_state.c
This file contains the check_and_add_state function - a function that is used to determine if a
reached state is found in the states collection and if so, to insert it there. (an operation that can be considered
atomic).

6

http://en.wikipedia.org/wiki/Simple_Simon_(solitaire)
http://en.wikipedia.org/wiki/Simple_Simon_(solitaire)
http://en.wikipedia.org/wiki/Simple_Simon_(solitaire)

Overview of the Code

It has several #ifdef'ed portions used to do it for the various types of states collections supported at compile
time. It also has a function to collect the new stacks that were present in a similar fashion.

It is being used by the tests functions to put a state in the state collection.

scans.c
This module contains the functions of the various scans and their auxiliary functions. The scan functions
run tests and traverse the graph according to some inherent logic. Currently present are random-dfs/soft-
dfs (soft-dfs is random-dfs without randomising groups), Best-First-Search (named A* in the code) and
Breadth-First-Search (named BFS in the code) functions.

instance.c
This module contains the logic that manages a solver instance, configures it and runs it. It used the scans
module to perform the scan and other modules to configure it. Note that the interface presented here is
very raw, and not meant to be used as an API.

lib.c
This module contains the user API. It manages a sequence of instances that can be used to solve a board, and
then recycled to solve another. It uses instance.c to perform its operations, and do the actual configuring
and solving. It supplies the API header file fcs_user.h which contains one function for doing any given
operation, and these functions are implemented in lib.c.

cmd_line.c
This module can be used to analyse an array of strings (similar to that given to the main() function) and
configure a user instance accordingly. It also implements reading such arguments from files and a presets
mechanism that can be used to assign names to common configuration and load them.

Deprecated Modules
These are modules that were previously used but have been superseded by different code. They can still
be found in the fc-solve/rejects directory of the trunk.

lookup2.c
This module implements a hash function [http://burtleburtle.net/bob/hash/] that was developed by Bob
Jenkins [http://burtleburtle.net/bob/]. It is essentially his code, that was just integrated into Freecell Solver
for convenience (note that it is also Public Domain).

fcs_isa.c
This module implemented indirect state allocation for states. It allocates states in memory pools (called
packs) which have a fixed location in memory and allocates as many such pools as it can.

Each pool contains several states that are placed one after the other, that thus retain their pointer. That way,
memory is conserved as an individually malloced state may have a lot of overhead. (a malloced block+a
fixed amount of data is rounded to the nearest power of 2)

fcs_isa allows releasing the last allocated state in case it will not be used.

7

http://burtleburtle.net/bob/hash/
http://burtleburtle.net/bob/hash/
http://burtleburtle.net/bob/
http://burtleburtle.net/bob/
http://burtleburtle.net/bob/

Chapter 4. Interesting Techniques
Used throughout the Code

State Representation
As can be seen in state.h, Freecell Solver supports two ways to represent a state:

1. Compact States - in this configuration the data is one buffer of chars, where each card and each stack
counter are represented as one character, and each freecell and foundation is one char too.

Determining the locations of every card is done using offset calculation.

This configuration consumes much less memory than Debug States, but it doesn't scale well to games
where the stacks can contain a lot of cards. The reason is that every stack be of a fixed size (so offset
would be determined by means of multiplication).

This configuration used to be the fastest for limited stack games such as Freecell. After Freecell Solver
2.6.x, it seems that Indirect Stack States has become slightly faster than it.

2. Indirect Stack States - in this configuration each stack is a pointer to a stack in memory. The stacks are
also collected and there is one copy of each stack organisation (say [KS QH 6H]) in memory. Since a
pointer to a stack uniquely identifies a stack, the states can be compared by comparing their memory
contents.

This is now the default configuration, and in the 2.5.x development tree, many enhancements were
done to optimise it. It was benchmarked to be slightly faster than Compact States, even for games like
Freecell.

Indirect Stack States Algorithms
The stacks are kept in their own stack collection in the freecell_solver_instance struct. When a move
function wishes to create a derived states, it first copies the state, and then marks the flags of all the stacks
as cleared. (check (*Mark STACKS_COW_CLEAR *) in the code).

Later on when a stack is changed, its flag is set, and a stack is copied to a indirect stacks buffer of the hard
thread. and modified there. (check (*Mark STACKS_COW_COPY_STACK*)).

The check_and_add_state function then, when checking a new state, ignores those stacks whose flag was
not set, and collects the stacks whose flag was set. ((*Mark STACKS_COW_CACHING*)). The memory
for the collected stacks is allocated compactly in a segment, where one stack starts after the other (check
alloc.c and alloc.h). If the stack was found in the collection the memory that was allocated is freed
for use by future stacks).

Extended States
For each position in the game graph, Freecell Solver maintains a data structure which identifies it called
fcs_state_t. This contains the cards in the stacks and the freecells, and the value of the foundations. The
stacks and freecells are uniquely sorted to avoid states that are identical except for a different permutation
of the stacks or the freecells.

8

Interesting Techniques
Used throughout the Code

fcs_state_extra_info_t contains a pointer to the fcs_state_t which it is associated with, and defines some
other data. The real locations of the stacks and freecells are stored there for instance, as well as some graph
information. See Canonisation and Normalisation in the terminology.

The States Graph and its Use
When a brand new state is discovered its parent is assigned to be the state from which it is derived. (check
(*Mark STATE_PARENT*)). Its depth is assigned to be the depth of the parent + 1. There is a command
line option (--reparent-states) that specifies that if an existing state whose depth is higher than the depth
of state it was derived from + 1 is reached, then its parent would be re-assigned.

An extended state has a num_active_children counter that specifies how many of those states that consider
it their parent were still not marked as dead ends. If this counter reaches 0, this state also becomes inactive.

The state has a vector of flags called scan_visited, that specifies if a given scan has visited it yet. If it is
a complete scan it can also mark it as dead end should it:

1. Recurse out of it if it's a DFS scan.

2. Find that it has no derived states if it is a Best-First Search scan.

If it is marked as dead end, then its parent's counter would be incremented. If the latter is zero, the process
may continue to the grand parent and so forth.

The Life-Cycle of a freecell_solver_instance_t
A freecell_solver_instance_t is allocated by lib.c to start solving a board. The logic of solving a board
is present in intrface.c while the external API functions to use it are implemented in lib.c.

After an instance is allocated, it should be parametrised to specify how it will solve
the board. Afterwards, freecell_solver_init_instance() should be called. After
that, freecell_solver_solve_instance() should be called for the first time, and
freecell_solver_resume_instance() afterwards. (these functions solve until they reach a
limit of iterations number.)

If one would like to use the instance to solve another board, it is possible to recycle it by calling
freecell_solver_recycle_instance(). This will keep its configuration but free all its
associated resources, and thus will not require parsing the command line again.

The function that calls the actual scans is run_hard_thread(), which is called from within
freecell_solver_resume_instance().

Compact Allocation
Most resources that are allocated arbitrarily in Freecell Solver are allocated in a compact manner. I.e:
instead of being individually malloced, they are allocated in segments and placed one after the other. The
segments are dynamically allocated and kept at a fixed location in memory. If more memory is needed,
another segment is allocated.

The module that is responsible for this is:

1. alloc.c/alloc.h - allocates blocks of arbitrary size in a compact manner.

It supports releasing the last allocated block and the last one alone.

9

Interesting Techniques
Used throughout the Code

Compact allocation is used for the following resources.

1. States - a derived state is allocated using the hard thread's allocator, and it is modified with the
appropriate moves. If it is found to have already existed, it is released. Else, it is kept and a pointer to
it can be found in the states collection.

2. Card stacks - if a card stack was modified, it is compactly allocated (see (*Mark
COMPACT_ALLOC_CARD_STACKS*)), before one checks to see if it is present in the stacks
collection. If it was found there, its memory is released. Else, it is kept there.

3. Move stacks - the move stacks leading to the parent are compactly allocated (see (*Mark
COMPACT_ALLOC_MOVE_STACKS*)).

4. Hash Elements - The elements of the hash linked lists are compactly allocated with a hash-wide hash
allocator.

10

Chapter 5. Software Configuration
Management
Game Presets Configuration

The info for generating the game presets is present in the file gen_presets.pl. It uses data
structure inheritance [http://groups.yahoo.com/group/fc-solve-discuss/message/51] to determine the exact
parameters to be included in each preset. Its output should later be incorporated into presets.c.

Generating the Site
The site lies in the sub-directory of fc-solve/site/wml in the VCS repository's trunk [https://github.com/
shlomif/fc-solve/tree/master/fc-solve/site/wml] and is generated using GNU Make, and Website Meta
Language [http://thewml.org/] .

The main site [http://fc-solve.shlomifish.org/] is generated from a makefile and uploaded to its place using
rsync.

The pkg-config File
The CMake process generates a libfreecell-solver.pc file that can be used as an aid in
programs wishing to compile and link against Freecell Solver. It is generated from libfreecell-
solver.pc.in by CMake and installed system-wide.

The Win32 Binary
The Windows 32-bit binary can be generated by running CMake on Windows on the Freecell Solver
distribution, generating a MinGW makefile and type "make package". There's a script to automate it:
scripts/build-on-win32.pl .

11

http://groups.yahoo.com/group/fc-solve-discuss/message/51
http://groups.yahoo.com/group/fc-solve-discuss/message/51
http://groups.yahoo.com/group/fc-solve-discuss/message/51
https://github.com/shlomif/fc-solve/tree/master/fc-solve/site/wml
https://github.com/shlomif/fc-solve/tree/master/fc-solve/site/wml
https://github.com/shlomif/fc-solve/tree/master/fc-solve/site/wml
http://thewml.org/
http://thewml.org/
http://thewml.org/
http://fc-solve.shlomifish.org/
http://fc-solve.shlomifish.org/

Chapter 6. Terminology

Terms used throughout the Code
Canonisation An extended state is canonised by its stacks being uniquely sorted

according to their contents, and an array of indexes describing their
original locations sorted accordingly. This is done to make sure no two
states with the same permutation of states exist.

Depth 1. The number of successive state → state.parent operations it take to
reach the initial state which is the base of the states graph.

2. In Depth-First-Search (DFS): the position of the state in the recursion
stack.

False Impossible A false impossible is an initial board position for which the solver reports
as impossible to solve, yet can be solved in some way. A false impossible
may be considered a bug depending on the context.

A meta-moves-based scan can potentially have false impossibles, while
an atomic moves one (which does not prune in any way) cannot.

False Negative See False Impossible.

f_s_ Short for "fc_solve_" or "freecell_solver_".

freecell_solver_user a generic name of the API used by the programmer who wishes to utilise
the Freecell Solver library in his application. Named after the prefix of
the functions of this library.

Graph The states in the state collection form a directed graph. Each link is a state

→ derived state relationship.

Hard DFS A Depth-First Search scan that uses procedural recursion. Since
suspending a scan and resuming it are O(d) operations (where d is the
depth) instead of O(1) for Soft-DFS its use is deprecated. As a result of
this, Hard-DFS was removed from the code, and when being specified, it
is implemented by Soft-DFS.

Hard-DFS was the original scan supported by Freecell Solver 0.2.0.

Hard Thread A collection of soft threads, that should generally be placed in one
system thread. Hard thread contains resources that soft threads from
different hard threads would interfere with each other in allocating. Hard
threads contain a collection of state packs, and various counters and other
variables.

Instance An initial board, a collection of states and all the scans associated with
it. An instance is initialised whenever one wishes to solve new board. By
using command line parameters it is possible to configure it to solve the
board in many ways. Instance logic is implemented in intrface.c,
and the user API is implemented in lib.c. Users are advised to make
use of the command line interface in cmd_line.c.

12

Terminology

Intractable An initial layout of the board that cause the solver to terminate the scan
prematurely (due to limitations on the iterations and the such) without
determining whether the board was solvable or not.

Iterations the number of states checked by a scan, or by all the scans of a hard thread
or of an instance. An iterations limit (called num_times in the code) is
used to restrict a soft thread, hard thread or instance from running too
long, and to allocate time quotas for different soft threads.

Meta-Move A move that consists of several individual moves done as one, to move
from state to a derived state. Some of the Freecell tests and all of the
Simple Simon tests generate meta-moves.

Move A one-time displacements of cards from stacks to stacks, from stacks to
freecells, or from freecells to stacks. Also contain some special moves
such as those for canonising stacks, and separators. Also see Move Stacks.

Move Stacks A sequence of moves implemented in its own object (check move.c and
move.h).

Normalisation normalisation is the opposite of canonisation. It is meant to bring the
stacks and freecells to their absolute locations. It is normally done only
when presenting a state to the user or to a code that uses the API.

Parent The state from which one state in the state graph was initially derived
from. It is possible that this state would eventually be reached from a
different state, but its parent in that case, remains the same.

Presets 1. A structure specifying the type of game according to number of stacks,
number of freecells, number of decks, whether kings can be placed in
empty stacks, if sequences have unlimited moves, and how stacks are
built by. Defined in preset.c.

2. A set of command line arguments to be processed as if they were
given on the command line. Can be used to shorten command lines.
For instance "-l cool-jives" or "-l john-galt-line" load the presets
"cool-jives" and "john-galt-line" respectively. Implemented mostly in
cmd_line.c.

Re-parent Let's suppose state DEST has been derived from state SRC. If the
SRC.depth+1 is less than DEST.depth than DEST's parent will be
reassigned to SRC. (if reparenting is enabled)

Soft DFS A depth-first search scan that does not utilise procedural recursion. In
Freecell Solver, this utilises a stack of records, each containing the current
state, the current test, the list of derived states, and other information.
This deviates from the standard scheme that puts every state at the end of
one stack scheme (that exists in LM-Solve [http://www.shlomifish.org/
lm-solve/] for example) and is harder to maintain, but can be fine-tuned
and conserve resources more easily.

Soft Thread A singular continuous scan operating on a states collection. It can be Soft-
DFS, Hard-DFS or Best First Search. There could be any number of soft
threads in a hard thread.

Stacks 1. Move Stacks (refer to them)

13

http://www.shlomifish.org/lm-solve/
http://www.shlomifish.org/lm-solve/
http://www.shlomifish.org/lm-solve/

Terminology

2. Columns of the Freecell-like games.

3. The stack used for maintaining the Soft-DFS recursion.

4. The environment recursion stack.

State The position of the game at any given situation. A state accurately
describes the contents of the stacks, freecells, and foundations at any
given time. A human seeing a state can solve the game from it without
further information.

State Collection A collection that collects every state once and only once. It can be sought
of as an associative array (or a map) of keys (the fcs_state_t) to values
(fcs_state_extra_info_t)

Test Groups A grouping of tests/move funcs that dictate which one should be
performed one after the and placed into the same derived states list.
Afterwards, this list can be randomised, or prioritised.

Tests A function that accepts a source state as input and fills a list of derived
states according to the moves it can perform. Each game type has several
type of tests, which can be ordered and grouped according to input from
the user. Now the term "move function/func" is preferred.

14

	Freecell Solver - Architecture Document
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Coding Conventions
	Bottom-Up Design and Evolution
	Using the gnu11 C dialect and POSIX
	Strict Adherence to the ANSI C Standard Library
	Namespace Purity
	Order of Trade-offs in the Design of the Code
	No Global or Static Variables
	Separation of Internals from User and Application Programmer Interfaces

	Chapter 3. Overview of the Code
	Overview of the Program
	Overview of the Utility Modules
	app_str.c
	rand.h
	fcs_hash.c
	fcs_dm.c
	alloc.c
	cl_chop.c
	pqueue.c

	Overview of the Core Modules
	card.c
	state.h
	state.c
	move.c and move.h
	preset.c
	freecell.c
	simpsim.c
	check_and_add_state.c
	scans.c
	instance.c
	lib.c
	cmd_line.c

	Deprecated Modules
	lookup2.c
	fcs_isa.c

	Chapter 4. Interesting Techniques Used throughout the Code
	State Representation
	Indirect Stack States Algorithms
	Extended States
	The States Graph and its Use
	The Life-Cycle of a freecell_solver_instance_t
	Compact Allocation

	Chapter 5. Software Configuration Management
	Game Presets Configuration
	Generating the Site
	The pkg-config File
	The Win32 Binary

	Chapter 6. Terminology
	Terms used throughout the Code

