
Thoughts about the Best Introductory
Language

Shlomi Fish <shlomif@shlomifish.org>
Copyright © 2006 Shlomi Fish

This work is licensed under the Creative Commons Attribution (CC-by) 2.5 License [http://
creativecommons.org/licenses/by/2.5/] (or at your option any greater version of it).

Revision History
Revision 1562 2006-08-04 shlomif

Forked the template from a previous work and working on it.
Revision 1691 2007-04-10 shlomif

Finished writing the document - about to release.
Revision 1837 2008-04-25 shlomif

Many spelling or phrasing errors corrected, and with some clarifications added.
Revision 1838 2008-04-25 shlomif

Corrected some problems in the new text. 2nd Revision.
Revision 2319 2009-02-27 shlomif

Added missing id’s to footnotes, so they won’t be randomly generated.
Revision 4855 2011-06-05 shlomif

Convert many ASCII single-quotes and double quotes to Unicode ones.

Table of Contents
Introduction ... 2
The Various (Wrong) Approaches to Introductory Programming Languages 2

Linda McIver’s Thesis Approach ... 2
The “Structure and Interpretation of Computer Programs” Approach 3
The “Teach in C” Approach ... 3
The “First Programming Language Should Make Sure You Write Good Code” Fallacy 4
The “It Should Have a Decent IDE” Fallacy ... 5
Teaching several languages simultaneously in an introductory course 5

Some useful relations .. 5
A High Level Language Should Come Before C .. 6
Perl/Python/etc. should Come before PHP ... 6
Perl/Python/etc. should Come before Shell .. 6
C should Precede Assembly ... 6
The First Language should be Practical .. 6
Localised Programming Languages should be Avoided .. 7
Java Should be Taught After Perl .. 8

My Verdict .. 8
Perl, Python, or Ruby .. 9

Perl .. 9
Python .. 9
Ruby ... 10

Final Verdict .. 10
Some Types of Teaching .. 11

1

http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/

Thoughts about the Best
Introductory Language

Conclusion ... 11
Other Good Food for Thought about Teaching ... 12

“Live as if you were to die tomorrow. Learn as if you were to live forever.” 12
Three Levels of Learning ... 12
Learn as Many Languages as Possible .. 13
Learning How to Read Code and Enhance Existing Code ... 13

Thanks .. 14

Introduction
The purpose of this essay is to contemplate what is the best introductory programming language to teach
for beginning programmers, or for a beginning programmer to learn on his own.

First, I will mention several approaches taken by other people who discussed this issue before, and try to
explain why I disagree with them. Then I will present and rationalise some relations (“Language A should
be learned before Language B”) that are good to follow. After that, I will propose my verdict, and discuss
some suitable alternatives. Finally, I will discuss some different types of teaching and how each should
be conducted differently.

As for how I started programming myself, I should note that I learned BASIC at the age of 10 (back
in 1987), and then learned C when I was 15 years old (in 1992); I later learned Visual Basic for
Applications [http://en.wikipedia.org/wiki/Visual_Basic_for_Applications] and when I was 19 years old
I was introduced to Perl and UNIX at my workplace, which was a web site creation shop (back in 1996,
when the Internet started to become popular). I have later learned other languages and technologies and
still do to a large extent.

One note that is in order is that you shouldn’t feel bad about having followed a different order in the
programming languages you’ve learned. By all means, you can still learn things on your own otherwise.

The Various (Wrong) Approaches to
Introductory Programming Languages

Linda McIver’s Thesis Approach
Linda McIver [http://www.csse.monash.edu.au/~lindap/] published along with Damian Conway
a paper titled “Seven Deadly Sins of Introductory Programming Language Design” [http://
www.csse.monash.edu.au/~lindap/papers/SevenDeadlySins.pdf] that explains the problems they found
with most popular introductory programming languages. The article makes a very good read.

Later on, her Ph.D. thesis [http://www.csse.monash.edu.au/~lindap/papers/LindaMcIverThesis.pdf]
introduced her idea of a good introductory programming language.

Now, if I had to summarise this language in one word it would be this: “sexless”. It’s incredibly limited,
not flexible, and not fun. It has no pointers or references and instead relies on nested structures and arrays.
There are two basic data types - a number and a string. The language does not have functions as first-
order objects, closures, or objects and classes in the Object Oriented Programming sense. Furthermore, it
has very few ways for one to express oneself. As a result implementing many algorithms would be very
difficult in it.

When I program, I’m using every tool in my arsenal, and expect the language to be powerful enough to be
able to translate my thoughts into code. McIver’s language is too limited and limiting, to be effective for

2

http://en.wikipedia.org/wiki/Visual_Basic_for_Applications
http://en.wikipedia.org/wiki/Visual_Basic_for_Applications
http://en.wikipedia.org/wiki/Visual_Basic_for_Applications
http://www.csse.monash.edu.au/~lindap/
http://www.csse.monash.edu.au/~lindap/
http://www.csse.monash.edu.au/~lindap/papers/SevenDeadlySins.pdf
http://www.csse.monash.edu.au/~lindap/papers/SevenDeadlySins.pdf
http://www.csse.monash.edu.au/~lindap/papers/SevenDeadlySins.pdf
http://www.csse.monash.edu.au/~lindap/papers/LindaMcIverThesis.pdf
http://www.csse.monash.edu.au/~lindap/papers/LindaMcIverThesis.pdf

Thoughts about the Best
Introductory Language

programming in, and being planned exclusively for beginners, lacks the richness and interesting idioms
that make programmers like or even love their languages.

This is a language that I won’t enjoy programming in. And I believe a professor who doesn’t enjoy
programming in a certain language, will not be able to effectively convey it to his students, while lacking
the enthusiasm and love for the tool he chose.

McIver’s approach is flawed in the sense that she is trying too hard to save the students from all possible
problems they may encounter in trying to understand their introductory language. However, programming
is often hard to learn, and learning the first language is always difficult. Creating a “flawless” language that
lacks any sex-appeal is not going to make it better, but much worse as both the professors and programmers
will detest it.

The “Structure and Interpretation of Computer
Programs” Approach

“Structure and Interpretation of Computer Programs” [http://mitpress.mit.edu/sicp/] (or SICP for short)
is a classic text and course material on programming, taught at MIT and many other universities around
the world. SICP uses Scheme (a minimalistic dialect of Lisp) as its exclusive language to cover many
important programming and meta-programming concepts.

I have read the book in my third semester of the Technion (without doing the exercises) and later took
both of the SICP courses that were given by my department. I learned a lot from the book, and while the
courses did not teach me too much new, I did enjoy working on the exercises.

However, there are several problems with teaching Scheme as an introductory language. The first is that it
is too impractical. Scheme does not have system primitives that more modern languages take for granted
like ones for random file and directory I/O, sockets, graphics primitives, or Graphical User Interfaces
(GUIs). Moreover, the core language is limited and most practical code tends to become very verbose in
it. For example, whereas in Perl one would write $myarray[$i]++ to increment an array element by
one, in Scheme it would be: (vector-set! myarray i (1+ (vector-ref myarray i))).

Most of the SICP exercises are about number theory, recursion, and a lot of other relatively abstract stuff,
and too few are about real world and exciting tasks: writing games and other demos, working with files,
writing scripts and utilities, networking and working with the WWW, etc. In fact, the Scheme standards
define too few useful things. Most of the dazzling number of different Scheme implementations [http://
community.schemewiki.org/?scheme-faq-standards#implementations] all extend the language in several
ways, but all have their own idea of how to do it. This is while Perl, Python and friends which have one
main C-and-POSIX-hosted implementation, or to C where the standard library is actually quite useful.

I believe an introductory language has to grow with you. When I studied BASIC, I was able to use it for
programming games, graphical demonstrations and animations, scripts, and other uses. I continued to use
BASIC on DOS and Windows, until I learned Perl, which I’m using instead today.

The “Teach in C” Approach
In his “Back to Basics” essay [http://www.joelonsoftware.com/articles/fog0000000319.html], Joel
Spolsky gave a case for teaching C as an introductory language instead of more high level languages. His
argument is that programmers will end up writing sub-optimal code because some low-level elements of
dealing with strings and arrays are abstracted away in higher-level language.

C and C++ have been popular introductory languages for teaching programming for many years now.
While some schools have switched to teaching Java or a different language, C and C++ are still very
popular.

3

http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://community.schemewiki.org/?scheme-faq-standards#implementations
http://community.schemewiki.org/?scheme-faq-standards#implementations
http://community.schemewiki.org/?scheme-faq-standards#implementations
http://www.joelonsoftware.com/articles/fog0000000319.html
http://www.joelonsoftware.com/articles/fog0000000319.html

Thoughts about the Best
Introductory Language

However, C has one major deficiency: it’s too close to the processor to be useful. In order to perform
an operation on two objects, one should allocate them first, perform the operation, and then take care of
freeing both objects and the result (to say nothing of edge cases where allocating or freeing may fail.).

All this work to do something that in high level, garbage collected, languages is as simple as $result
= $object1 OP $object2;. From my experience with Technion students, they often get so bogged
up in the technicalities of working with C instead of getting quick, dirty, and useful, code running.

A good introductory programming language should allow you to write a lot of useful code quickly, and
not slow you down with many low-level constraints. Beginning programmers have a hard enough time
learning how to translate their thoughts and intentions into working code, and solving bugs and the last
thing they need is to deal with too many idiosyncrasies of the language only because it is too low-level.

Spolsky’s argument about the efficiency of some operations is wrong, because programmers who learn
such languages won’t often notice the difference from such inefficient operations, due to the incredible
speed of contemporary computers and the fact that their data sets are generally too small. Moreover, many
instructors and exercise checkers won’t penalise for the presence of such issues in their homework.

While the efficiency of algorithms and the underlying implementation of language primitives should be
stressed at a certain point, the first task of an introductory course is to make sure a programmer can learn
to write code, not necessarily the most efficient one. (Not even according to asymptotic complexity).
Learning how to write quick and dirty code is a mental leap that is large enough as it is.

The “First Programming Language Should Make Sure
You Write Good Code” Fallacy

You many times hear people saying that beginning programmers should be taught using a programming
language that restricts them and forces them to write good code. Languages like Pascal, Ada, Java, and
many others were designed to try to save programmers from themselves. And indeed many people believe
that programmers should start learning from such a language.

What’s wrong with this approach? Several things:

• The more strict the language is, then generally the less expressive it is. Programmers like to express
themselves and be able to implement algorithms using the entire power of the language. They don’t want
to declare a lot of type definitions, many constraints, write a lot of syntax, or otherwise be encumbered
in the way.

It may actually make them think programming is loathsome or otherwise a very strict process instead
of a very creative process.haskell

• Often, the trial and error will be good for them. Plus, even writing some disorganised, but functional code
is better than the program taking them much more time to write (and more time to read and understand
after writing).

I don’t expect them to become superb programming in a day. Becoming a better programmer is a process,
and cannot be taught in a semester or a year of hard work.

haskell A comment to the first revision of this article [http://lambda-the-ultimate.org/node/2194#comment-28811] claimed that “Some languages,
like Haskell, derive their expressive power exactly because of the restrictions imposed”. My reply is that arguably languages like Lisp have the same
expressive power, but obviously a more verbose syntax due to the fact they are using S-expressions [http://en.wikipedia.org/wiki/S-expression] and
that they are lacking some functions that were added to Haskell, O’Caml and SML. Raku / Perl 6 [http://dev.perl.org/perl6/] aims to combine more
idioms from Haskell and Lisp than Perl 5 already has, yielding a language that’s generally even more succinct.

I believe that Haskell derives its expressiveness not from its strictness, but rather from its abstractions, and that this expressiveness can be duplicated
to a large extent in a less strongly typed language. However, my mastery of Haskell is still somewhat superficial, and so I’m not fully qualified
to comment on it.

4

http://lambda-the-ultimate.org/node/2194#comment-28811
http://lambda-the-ultimate.org/node/2194#comment-28811
http://en.wikipedia.org/wiki/S-expression
http://en.wikipedia.org/wiki/S-expression
http://dev.perl.org/perl6/
http://dev.perl.org/perl6/

Thoughts about the Best
Introductory Language

The “It Should Have a Decent IDE” Fallacy

Many education institutions reject many languages as introductory languages because
they don’t have a decent integrated development environment [http://en.wikipedia.org/wiki/
Integrated_development_environment] (or IDE for short). An IDE as useful and convenient as it is,
however, is not an absolute requirement.

Programming does not happen in the IDE - it happens in the mind. Programmers should learn to write
code that does something. By using the text editor (of the IDE or a standalone one) and writing text that
does something, they can best learn to program for the real world.

There is a myth that programming using a text editor and a command line is too difficult for mortals.
This is false because, as late as the 1980’s or 1990’s, almost all personal computers used a command-line
interface (often a BASIC interpreter or DOS), and required programming using non-graphical editors, and
it was still adequate for most people. (To say nothing of earlier interfaces such as Teleprinters (TTYs)
[http://en.wikipedia.org/wiki/Teletypewriter] or punched cards). Plus, it is hard for a programmer to avoid
typing code entirely.

Also see the fact that Perl 5 used to lack good development tools and yet was not and is not
tedious to write [https://www.shlomifish.org/humour/fortunes/show.cgi?id=sharp-typescript-discussion-
about-programming-languages-and-tools]. This is whereas Lambda Calculus is still relatively tedious and
time-consuming to write.

Teaching several languages simultaneously in an
introductory course

Teaching two-or-more main languages at the same time (in what is an introductory course) should be
avoided. Learning one language is often hard enough, and with more than one, the students may become
extremely confused. In response to an earlier version of this essay, a friend suggested that one should
teach three introductory languages, and if I were remember correctly, they were: 1) something like C, 2) a
convenient dynamic language such as Perl or Python, and 3) a very "mind expanding" language like Lisp
or Haskell. I noted that many of the students will likely be too confused given these languages are very
different - syntactically, semantically, and often in their design philosophy.

I would rather a lecturer or an instructor teach one sub-optimal language, than teach it along with one or
more programming languages in the scope of the introductory course.

Someone on the Freenode's #perl chat-room [http://perl-begin.org/FAQs/freenode-perl/] came and asked
for help in parsing a semicolon that does not occur inside shell quotes (e.g: echo "Semicolon in
string - ; foobar" ; ls -l ;) using regular expressions. I suggested him to use a parser
generator, and then he said that his teacher has forbidden him from using it or any other external CPAN
module and that he could only use regular expressions, in order to, get this: write some Perl code that will
convert Bash to Python. His teacher expected them to learn those three languages at once. And apparently
without making a judicious use of the third-party and open-source APIs that would be right for the job.

Some useful relations
This section will introduce some useful relations (“Language A should be taught before Language B”)
to consider in teaching programming, and rationalize them. By using these relations one can more easily
reach a final verdict.

5

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Teletypewriter
http://en.wikipedia.org/wiki/Teletypewriter
https://www.shlomifish.org/humour/fortunes/show.cgi?id=sharp-typescript-discussion-about-programming-languages-and-tools
https://www.shlomifish.org/humour/fortunes/show.cgi?id=sharp-typescript-discussion-about-programming-languages-and-tools
https://www.shlomifish.org/humour/fortunes/show.cgi?id=sharp-typescript-discussion-about-programming-languages-and-tools
https://www.shlomifish.org/humour/fortunes/show.cgi?id=sharp-typescript-discussion-about-programming-languages-and-tools
http://perl-begin.org/FAQs/freenode-perl/
http://perl-begin.org/FAQs/freenode-perl/

Thoughts about the Best
Introductory Language

A High Level Language Should Come Before C
C should not be taught as a first programming language from the reasons I have mentioned above. By
all means, one should use a more high level language which supports Managed programming, and other
nice high level constructs. Languages like Perl, Python, Ruby and to a lesser extent Java and C#/.NET are
much better than C as introductory languages.

Perl/Python/etc. should Come before PHP
Some people believe that PHP is a suitable introductory language. However, PHP has several major
problems: lack of good abstraction mechanisms, many inconsistencies, many functions to do the same
thing, and many nuances to its use. People who learn PHP right away, tend to write very bad (and
sometimes very dangerous) code in it, and are not well-aware of its pitfalls.

PHP may be a useful language for the web and for other uses, especially because its implementation makes
deployment of some large-scale web applications easier. However, the other languages in the so-called
“dynamic”, “agile”, or “scripting” class of languages are not harder to learn, and less problematic. So they
should be taught first instead.

Perl/Python/etc. should Come before Shell
Some people believe that the first language a UNIX user should learn is a good shell (such as GNU Bash
[http://www.gnu.org/software/bash/] or zsh [http://www.zsh.org/]). However, Shell has some issues. The
first is that the mentality of the UNIX Shell is different from the mentality of conventional programming
languages, and causes native shell programmers to be less capable of adapting to a different language, as
well as writing sub-optimal code in shell.

The second is that in traditional shell, some operations are not as efficient as they should be. While more
modern variants have introduced arrays and string-wise dictionaries, they are still an afterthought. For
these reasons, shell is not recommended to learn before a dynamic language.

C should Precede Assembly
It is certainly a good idea to learn Assembly language [http://www.onlamp.com/pub/a/onlamp/2004/05/06/
writegreatcode.html], preferably of several different processor architectures. However, C should be learnt
first.

The reason for that is that people who dive right into Assembly, tend to write sub-optimal code because
they don’t understand well how this code is executed by the processor and how to compile it. This is while
programmers who’ve learned C are better equipped to understand how Assembly code works, because it
is somewhat more convenient yet still very close to Assembly.

A friend of mine reported that in his workplace, where they write Assembly code for various Digital Signal
Processors (DSPs) some of the native Assembly programmers order their instructions in ways that are
executed inefficiently because of the special processor pipeline. He then told me that C programmers who
learn Assembly make better Assembly programmers.

The First Language should be Practical
A good first programming language should be practical and should grow up with you. I can tell from
my experiences with the various BASICs, which were the first languages I learnt, that BASIC was fun
because it was useful. Using BASIC on the old Intel-based computers, one could write games, graphical
demos, text processing and command execution scripts, and even serious applications. While BASIC is in
today’s standards a very limited language that should no longer be taught as a first language, I still fondly

6

http://www.gnu.org/software/bash/
http://www.gnu.org/software/bash/
http://www.zsh.org/
http://www.zsh.org/
http://www.onlamp.com/pub/a/onlamp/2004/05/06/writegreatcode.html
http://www.onlamp.com/pub/a/onlamp/2004/05/06/writegreatcode.html
http://www.onlamp.com/pub/a/onlamp/2004/05/06/writegreatcode.html

Thoughts about the Best
Introductory Language

remember it as being a lot of fun. I even continued using BASIC after I learned C and what was then C+
+, because it was quicker and more convenient. (I no longer do, because I now feel that Perl and Python
are superior to BASIC, and they are what I’m using now.)

On the other hand, Scheme as in SICP is an awful choice for an introductory programming language,
because it feels very impractical. Writing quick and dirty code to do a lot of things in Scheme is very
verbose. Moreover, the core standard lacks many primitives for common POSIX [http://en.wikipedia.org/
wiki/POSIX] operations (like random file I/O, directories, sockets, etc.) much less useful APIs. While some
Scheme implementations provide extensions to the language, they do so in different incompatible ways.

Different people I talked to, agreed with me that “You cannot do anything with Scheme”. Compare it to
languages such as C and C++, Perl/Python/Tcl/Ruby/PHP, Java/C#, etc. that feel very practical, and you’ll
see why hardly any industrial-strength code is written in Scheme.

Teaching a language just for teaching programming with, is sub-optimal because the students cannot take
this language with them and perform real-world tasks with it. They will have less motivation to experiment
on their own, and to remember it for long.

Localised Programming Languages should be Avoided
The Wikipedia has an (incomplete) list of non-English based programming languages [http://
en.wikipedia.org/wiki/Category:Non-English-based_programming_languages], that were created at some
time. What these languages try to do is make sure young children or other people who did not master the
English Alphabet and vocabulary well can start learning programming without knowing English first.

I see several problems with this approach. One is that it is important that children will be taught English
starting from an early age - as early as possible. This is because English, being the international language,
is becoming more and more important for every one to learn. Tender children who are talked to in several
languages, will quickly master them, without confusing them. This will save them a lot of frustration later.
(By all means if one happens to know other languages, he should talk to his children using them too, but
that is beside the main point.)

Knowledge of English is more important than knowing how to program. So it is a good idea that when
teaching programming to teach English first as a necessary pre-requisite.

The other problem I see is that such localised programming languages feel unnatural and wrong. English
has the richest technical vocabulary of any other language, and some terms in English are impossible to
translate to other languages. And yet another is that such languages tend to be very ad-hoc and incomplete.
Finally, code that is written in them cannot be understood by programmers who don’t know this language.

So, to sum up, instead of starting with a localised programming language, teach your students some basic
English first. It might take longer, but will save more time and frustration later on. Plus, programming is a
great way to expand one’s mastery of English, especially today when the Internet is so prevalent.globalisation

globalisation A few people who read this article claimed I was advocating globalisation. However, consider what Eric Raymond writes in “How to
Become a Hacker” [http://catb.org/~esr/faqs/hacker-howto.html]:

4. If you don’t have functional English, learn it.

As an American and native English-speaker myself, I have previously been reluctant to suggest this, lest it be taken as a sort
of cultural imperialism. But several native speakers of other languages have urged me to point out that English is the working
language of the hacker culture and the Internet, and that you will need to know it to function in the hacker community.

One should note that the proliferation of English today is not the first time that there happened to be a Lingua franca [http://en.wikipedia.org/
wiki/Lingua_franca] in the world or a limited part of it. I also feel that having one spoken language that everyone of importance is familiar with
(although possibly not so well) is better than not having any good common way of communication, and thus was shown to be inevitable times
and again in history.

7

http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/Category:Non-English-based_programming_languages
http://en.wikipedia.org/wiki/Category:Non-English-based_programming_languages
http://en.wikipedia.org/wiki/Category:Non-English-based_programming_languages
http://catb.org/~esr/faqs/hacker-howto.html
http://catb.org/~esr/faqs/hacker-howto.html
http://catb.org/~esr/faqs/hacker-howto.html
http://en.wikipedia.org/wiki/Lingua_franca
http://en.wikipedia.org/wiki/Lingua_franca
http://en.wikipedia.org/wiki/Lingua_franca

Thoughts about the Best
Introductory Language

Java Should be Taught After Perl
Joel Spolsky wrote an essay titled “The Perils of JavaSchools” [http://www.joelonsoftware.com/articles/
ThePerilsofJavaSchools.html] where he argued that teaching Java in Computer Science curricula is inferior
to teaching C and Scheme, which was what he learned. The article is wrong on many points, but it highlights
some of the problems with Java.

Java is too verbose. Some people may argue that this can be solved by using a proper IDE, but as
Paul Graham explains [http://www.paulgraham.com/popular.html], verbose code also has the “the cost of
reading it, and the cost of the space it takes up on your screen.”.

Moreover, Java code tends to be very monotonous. Almost all Java code looks the same, and feels boring.

Steve Yegge’s very funny article “Execution in the Kingdom of Nouns” [http://steve-
yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html] illustrates another problem with Java.
Everything has to be a noun, with no verbs or even the many keywords which Perl 5 is infamous for but
which Perl programmers love. And instead of having some Perl 5-like operators for converting between
data structures, you have a hideously long casting lines.

Java was supposed to be kept simple, and many important concepts like closures, multiple-inheritance,
defining methods at runtime (a la Smalltalk), runtime code evaluation (the Lisp-derived “eval” operator,
which is now common in most dynamic languages), operator overloading, and many other elements
had been kept out of it. As such it turned out to be very unusable. Java 1.5/5.0 introduced many
drastic enhancements, but not enough proper abstractions. As a result, Java is now bloated, but talented
programmers still normally find writing code in Perl, Python and friends more natural.

Paul Graham’s essay Java’s Cover [http://www.paulgraham.com/javacover.html], which he wrote to
explain why he decided not to learn Java is very instructive. I read Graham’s article, some time after it
has been written and felt it reflected my feelings about the language. Back when Java started to become
hyped , I had ended up learning Java to see what the hype was about and to write some browser applets.
While having felt that I have truly understood what the essence of references in Perl 5 was, only after
learning Java, I still felt that Java was too over-rated.

Perhaps I’m getting too carried away in criticising Java. My point is that, as Joel Spolsky indicated in his
“JavaSchools” essay, teaching Java as the first language, makes many of the people who have learned it
airheads, who cannot think outside the limited constraints that it imposes on the programmer. Teaching an
expressive and rich dynamic language [http://en.wikipedia.org/wiki/Dynamic_programming_language]
such as Perl or Ruby instead, will not exhibit this problem, regardless of what Joel says, as these languages
constantly require a programmer to think outside the box, and introduce the programmer to many different
(often built-in) patterns and paradigms.

My Verdict
According to these constraints, I recommend that one should start learning how to program from a high-
level, dynamic and practical language such as Perl, Python, or Ruby.

Eric Raymond recommends this in his excellent “How to become a Hacker” document [http://catb.org/
~esr/faqs/hacker-howto.html]. He suggests one should start with XHTML, which while not being a
programming language but rather a formatting language will still introduce many programming idioms
and disciplines as well as prove useful later on.

After XHTML, Raymond recommends one to learn Python. However, I’m not sure whether Perl 5 or Ruby
will not be as suitable as Python, or more. Unfortunately, I cannot reach a conclusion here, but rather give
some of my thoughts on each three languages.

8

http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html
http://www.joelonsoftware.com/articles/ThePerilsofJavaSchools.html
http://www.paulgraham.com/popular.html
http://www.paulgraham.com/popular.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
http://www.paulgraham.com/javacover.html
http://www.paulgraham.com/javacover.html
http://en.wikipedia.org/wiki/Dynamic_programming_language
http://en.wikipedia.org/wiki/Dynamic_programming_language
http://catb.org/~esr/faqs/hacker-howto.html
http://catb.org/~esr/faqs/hacker-howto.html
http://catb.org/~esr/faqs/hacker-howto.html

Thoughts about the Best
Introductory Language

(If I need to teach programming, I’ll start with Python 3 because I know it fairly well, like it, and think
it is relatively easy and useful. However, programmers who are well versed in Perl or Ruby, may wish
to teach them instead.)

Perl, Python, or Ruby

Perl

The core Perl language is huge. That may be a good or a bad thing for teaching programming in. The
Perl language can be usable by learning only a small subset of the language. However, as budding
Perl programmers learn more, they tend to diverge in the what they know, and use different subsets,
which makes understanding code of peers with different background more problematic. (Or that of more
experienced developers even more so.) This problem is naturally not limited to Perl 5, and given good,
searchable documentation can be made less pronounced, but is still a pedagogical hurdle.

Perl is very expressive. I believe programmers will appreciate its “There is more than one way to do it”
philosophy. A correspondent once told me he’d prefer to teach beginners Perl instead of C, similarly to
the fact that he’d prefer to teach English over Esperanto, because beginners would prefer a language that
allows them to express themselves. Esperanto

Historically, Perl had a lack of good online documentation for beginners, and other problems with the
treatment of newcomers [http://www.shlomifish.org/philosophy/perl-newcomers/], but these issues have
improved lately.

Perl has a rich (and so far unmatched) collection of re-usable modules that provide functionality called
CPAN - the Comprehensive Perl Archive Network [http://en.wikipedia.org/wiki/CPAN]. Uploads to
CPAN are not moderated (on purpose) and therefore it is sometimes hard to find a suitable CPAN module
out of the many low-quality or unsuitable ones (if there actually is one available). rethinking-cpan They may
prove useful in teaching programming in Perl.

Perl has a rich and active culture surrounding it, including many diversions as golf challenges [http://
perlgolf.sourceforge.net/], riddles, many specialised mailing lists, Local Perl Mongers groups, and
conferences.

Python

Python has a relatively small core language and it tries to be elegant. It has an excellent online
documentation, and many introductory books for it are available online at no cost. The online Python
community used to have a lot of elitism, and tended to deprecate Perl and other languages a lot, for some
reason. I am not blaming anyone in particular, but this tendency is present to some extent by some of the
greatest names in the Python world, and by some Python fans I personally know.

People who know Perl very well, can learn Python with fewer mental blocks than the other way around.
This is in due to the fact Perl is richer, and supports more paradigms. A Perl programmer told me he was
able to start working on a Python program right after starting to edit it using his editor, and it worked,
after some research.

Esperanto Several people contacted me saying I have misrepresented Esperanto here. I should note that I’m quoting someone else, and I admit that I
don’t know Esperanto well enough to be sure if it indeed suffers from many problems attributed to artificial languages.

The point is not to dismiss Esperanto, but rather to say that many people appreciate expressibility, and some of them also appreciate irregularity (or
even inconsistency) in their spoken or programming languages, as it makes life more interesting.
rethinking-cpan As of April, 2008, there is an effort under-way to revamp the CPAN experience [http://perlbuzz.com/2008/04/rethinking-the-interface-
to-cpan.html]. The author of these lines is involved with it, so he may be a bit biased. Plus, the effort is still in its infancy.

9

http://www.shlomifish.org/philosophy/perl-newcomers/
http://www.shlomifish.org/philosophy/perl-newcomers/
http://www.shlomifish.org/philosophy/perl-newcomers/
http://en.wikipedia.org/wiki/CPAN
http://en.wikipedia.org/wiki/CPAN
http://perlgolf.sourceforge.net/
http://perlgolf.sourceforge.net/
http://perlgolf.sourceforge.net/
http://perlbuzz.com/2008/04/rethinking-the-interface-to-cpan.html
http://perlbuzz.com/2008/04/rethinking-the-interface-to-cpan.html
http://perlbuzz.com/2008/04/rethinking-the-interface-to-cpan.html

Thoughts about the Best
Introductory Language

Python’s philosophy is “There’s one good way to do it.”. It doesn’t mean that there aren’t other ways,
but there is one commonly acceptable way to write most code. Whether this is a good thing or not for an
introductory language is debatable.

If you’ve learned Python as your mother language, you should take the mental leap and learn Perl, which
is the Tower of Babel of languages, and also has many DWIMmeries (“Do-What-I-Mean”’s) and other
expressiveness. (Of course, a Perl programmer should also learn Python due to its elegance, and the fact
it is extensively used and useful.)

Ruby

Before I discuss Ruby a word of warning: I don’t know it very well. So far all the limited tasks I tried to
accomplish using it worked well after some trial and error, but I still did not take the time to thoroughly
study it.

Ruby was written after its creator was unhappy to some extent with both Perl (possibly 4 at the time)
and Python, and so he created a language that tried to combine the best elements of Smalltalk, Perl, and
Python. Ruby aims to be elegant and consistent, yet still very expressive and shares Perl’s “There’s more
than one way to do it” philosophy.

As of version 1.x, Ruby does not support multi-threaded programming, has poor support for Unicode, and
is much slower than Perl or Python. Some of these problems will be addressed in Ruby 2.x.

The worst problem with Ruby, however, is the lack of good documentation. Ruby has one old edition
of the “Programming Ruby” book [http://www.rubycentral.com/book/] available online, and that’s it.
Furthermore, this book is intended for absolute beginners and will be too slow paced for people with
extensive experience in similar languages.

All the other books from the Pragmatic Programmer series are not available online (including the new
editions of the “Programming Ruby” book). What many people end up doing is downloading them from
“warez” sites or from Peer-to-Peer networks, but I wouldn’t encourage professors to tell their students
to do that.

I recall trying to find out how to tag methods in Ruby, in a similar way to Perl’s method or variable
attributes. Google was no help and no one on Freenode on #ruby-lang told me and I asked several times,
and people tried to research it. Eventually, someone I knew on #perl was able to give me the answer. He
then claimed that many of the slightly more unconventional, but useful, tricks in Ruby were completely
undocumented.

As such, one may still encounter problems teaching Ruby as an introductory language. If these problems
are remedied by the Ruby community, with some amount of work and effort, then this may be better.

Another note is that as of January 2025, Ruby seems to have become unpopular, and largely unloved (and
“post-hip“ / ”post-hype”). I also grew to dislike it, and prefer writing most new code in Python 3, Perl,
and other programming languages.

Final Verdict
All things considered, I’d say that Python is the best choice now, as Perl’s scope is larger, and is
less consistent, and Ruby is also less consistent, and fell out of favour from the software developers’
community. Again, any of the three languages would be a fine choice, and all of them should be learned
by any programmer who is worth his weight in salt.

Note that other than the main players in the dynamic language arena, there is the new crop of such
languages: Lua [http://www.lua.org/], Io [http://www.iolanguage.com/], The D Programming Language

10

http://www.rubycentral.com/book/
http://www.rubycentral.com/book/
http://www.rubycentral.com/book/
http://www.lua.org/
http://www.lua.org/
http://www.iolanguage.com/
http://www.iolanguage.com/
http://www.digitalmars.com/d/

Thoughts about the Best
Introductory Language

[http://www.digitalmars.com/d/], and others. These languages may be more suitable in some respects, but
on the other hand, may not yet have the brain-share, comprehensiveness (especially as far as APIs are
concerned), usability, richness or “sex-appeal” consistency.

Some Types of Teaching
There are several different types of teaching programming to laymen. This section aims to cover the most
important ones and what needs to be considered when they are done.

The first type I’ll discuss is a self-teaching enthusiast who is trying to teach himself programming, perhaps
with some help from his friends or people he is interacting with on the Internet. Such an enthusiast usually
has a lot of motivation to learn, but on the other hand, will probably not put up with a material that bores
him or seems trivial.

The second type is a programmer who tries to teach a child or a teenager programming. Such youngsters
are often mostly motivated by things that seem fun to them: games, demos, drawing pretty pictures
programmatically, etc. They will have little nerve for a tedious programming language such as C, in which
every task often requires a large amount of code.

A different type of pedagogy altogether is introducing programming to students in university. Such
students are older, have more mathematical background, and will find other things aside from games
enjoyable. On the other hand, they tend to have less willingness to experiment on their own, or to play
with the computer. They expect to learn programming so they can either go on with their degree, or use
it to learn the rest of their degree.

When people teach programming in the so-called K-12 school (i.e. pre-college or university), then such
students will have less mathematical background than their college counterparts, and may find learning
programming (as they find learning most everything) a burden. On the other hand, they tend to be brighter
and more curious.

The final type of teaching is in training courses. It is known that such people often have to be spoon-fed
the material. Plus, they may not be as bright as those who were accepted into high-class universities or
colleges.

How does this influence the choice of the introductory language? It probably doesn’t. However, it
influences the way the language should be taught and which parts of it should be taught first.

Conclusion
I talked with some people on the IRC about it and some of them told me something along the lines of
“What makes you think that you know better than all the universities and colleges (and other schools) that
are now teaching Java?”. Well, this is the majority must be right fallacy:

1. Everybody thinks that the Earth is flat (or that the sun revolves around it) so it must be true

2. Everybody thinks that drugs should be illegal [http://www.shlomifish.org/philosophy/politics/drug-
legalisation/] so it must be true.

Etc. I can think of many other cases where a common consensus, even among experts turned out to be
false. But I’ll still explain a bit.

consistency Some people assume that the more consistent a language is the better. However, just as most people prefer expressive and inconsistent
natural human languages like English, many of them would prefer their programming language to have some inconsistencies, Do-what-I-mean-
erries, gotchas, etc. In Perl 5’s case it is well known that these make the language more expressive and succinct [http://www.paulgraham.com/
power.html] in the hands of a competent programmer.

11

http://www.digitalmars.com/d/
http://www.shlomifish.org/philosophy/politics/drug-legalisation/
http://www.shlomifish.org/philosophy/politics/drug-legalisation/
http://www.shlomifish.org/philosophy/politics/drug-legalisation/
http://www.paulgraham.com/power.html
http://www.paulgraham.com/power.html
http://www.paulgraham.com/power.html

Thoughts about the Best
Introductory Language

Universities have tended to teach the “hottest” language on the market. They used to teach Assembler.
They used to teach COBOL (an awful language by all means, and one which proved to be a dead-end in
language design). They taught Fortran and PL/I. They taught Pascal. They taught C and C++. And now
they teach Java. I believe none of these languages were suitable as an introductory programming language,
but they were taught because they were used in the industry.

During the course of IT education, several languages need to be studied - at least one dynamic language
such as Perl, Python or Ruby ; C; an assembly language; Lisp (Scheme, Common Lisp or perhaps now
Arc [http://www.paulgraham.com/arc.html]); Haskell, O’Caml or SML; and probably some specialised
languages when they are appropriate. But the first language need not be what is the most hyped language
in the industry, or even what most the rest of the studies will be conducted in.

From my impression of the Technion [http://www.shlomifish.org/philosophy/computers/education/
opinion-on-the-technion/], the institute as a whole believes that students can effectively write all their
code in C. In some courses, the choice of C++ and Java are given, but these languages are not effectively
taught. Most students, during their studies, had not been exposed to such advanced paradigms as regular
expressions, dynamic-typing, Perl 5-like nested data structures, run time evaluation, closures and dynamic
functions, and others that are considered common knowledge among developers of dynamic languages.

So my opinion still remains: Perl, Python or Ruby are the best languages for introducing non-programmers
to programming, while Python is the best, and Ruby is probably the worst of the three. However, note
that any decent programming training will introduce its developers to more than one language, and a
prospective programmer should not worry if he started out with a language that I consider sub-optimal.
With good ambition and motivation and with the right attitude (“I know that I do not know”), one can
become a better and better programmer regardless of his initial background.

Other Good Food for Thought about Teaching
This section will bring other good for thought about teaching.

“Live as if you were to die tomorrow. Learn as if you
were to live forever.”

This is a quote attributed to Gandhi [http://en.wikipedia.org/wiki/Mahatma_Gandhi]. The “Learn as if you
were going to live forever” part is not widely understood by many workers. Many programmers believe
that their knowledge of a few programming languages is enough, and that it is not necessary that they
learn completely different ones.

It is well known that learning a new and different programming language will make you a better
programmer also in the original languages you know. Programmers who don’t learn new programming
languages eventually stagnate. They are bounded by their limited knowledge, and cannot think outside
their box. They deserve the stagnation they receive due to this bad attitude, and mental laziness.

If you want to grow as a programmer, make sure you keep studying new languages and technologies. Not
only they may turn out to be useful, but they’ll also make you think in completely different ways.

Three Levels of Learning
Rabbi Hanina used to say “I learned a lot from my teachers, and from my friends more than my teachers,
and from my pupils the most.” I believe this means that there are in fact three levels of learning:

1. Level 1 - Learning - this is a passive learning of the material, where one inputs the material.

12

http://www.paulgraham.com/arc.html
http://www.paulgraham.com/arc.html
http://www.shlomifish.org/philosophy/computers/education/opinion-on-the-technion/
http://www.shlomifish.org/philosophy/computers/education/opinion-on-the-technion/
http://www.shlomifish.org/philosophy/computers/education/opinion-on-the-technion/
http://en.wikipedia.org/wiki/Mahatma_Gandhi
http://en.wikipedia.org/wiki/Mahatma_Gandhi

Thoughts about the Best
Introductory Language

2. Level 2 - Experiencing - in this level you work with the material you learned, and try to implement
what you’ve learned and integrate it. This requires more understanding, because you have to work with
the material.

3. Level 3 - Teaching - in this level you teach the material to someone else. This requires the most
understanding because you need to organise it properly and convey it to someone else.

Perhaps there’s a fourth level - Science in which the knowledge is expanded. However, this implies that
to truly understand the material, one needs to experiment with it (preferably in production) and better yet
teach it to someone else.

The old adage “He who can - does. He who cannot - teaches.” which was said by George Bernard
Shaw [http://en.wikiquote.org/wiki/George_Bernard_Shaw] is amusing, but simply not true, as I’ve
demonstrated here. Being a great teacher is much more difficult than being a great doer, and is much more
enlightening. those_who_can

Learn as Many Languages as Possible
Different programming languages introduce different insights: various easier ways to do certain things,
different restrictions , different syntax, different APIs, different ways of doing things, different high-level
mechanisms (or lack of them). All of this gives different understandings of how to program in any language.

Many people believe that their limited knowledge is adequate. Java programmers are especially notorious
for being opposed to the ideas of them having to learn different languages. The Pragmatic Programmer
book [http://www.amazon.com/exec/obidos/ASIN/020161622X/ref=nosim/shlomifishhom-20] says a
programmer should learn a new computer language at least every year, and I tend to agree with it. I
compiled a tentative list of the technologies I found the most enlightening [http://www.shlomifish.org/
philosophy/philosophy/advice-for-the-young/#technologies_to_learn], and I recommend programmers to
learn at least all of them.

Learning How to Read Code and Enhance Existing Code
At present, universities and other educational institutes, spend the most time teaching programmers how
to write code. However, most of what programmers have to do for paid work or for pro-bono work (like
open source projects) is to read code, and to enhance existing code.

Joel Spolsky (“Joel on Software”) [http://www.joelonsoftware.com/] gave the following “cardinal rule of
programming” in his famous “Things you must never do, part I” essay [http://www.joelonsoftware.com/
articles/fog0000000069.html]:

It’s harder to read code than to write it.

My friends and I later discussed this topic in the Hackers-IL mailing list [http://tech.groups.yahoo.com/
group/hackers-il/message/3576]. Even if code is given for reading in university, it is usually extremely
well-written, highly organised, highly legible, code, rather than the real code that programmers are likely
to encounter in the wild.

It’s a shame most of the code students write as part of their curriculum is only for themselves, and ends
up being of little value to the world at large. Even if some code ends up as an open source project, it is
usually too incomplete and lacks essential functionality or correctness to be of any use in the real world.

those_who_can What is true, in my opinion. is that “Those who can - do. Those who can’t - complain.” However, often people who can and do,
still complain. I recall this quote being attributed to Linus Torvalds [http://en.wikipedia.org/wiki/Linus_Torvalds], but it predates him [http://
shlomif.livejournal.com/39215.html].

13

http://en.wikiquote.org/wiki/George_Bernard_Shaw
http://en.wikiquote.org/wiki/George_Bernard_Shaw
http://en.wikiquote.org/wiki/George_Bernard_Shaw
http://www.amazon.com/exec/obidos/ASIN/020161622X/ref=nosim/shlomifishhom-20
http://www.amazon.com/exec/obidos/ASIN/020161622X/ref=nosim/shlomifishhom-20
http://www.amazon.com/exec/obidos/ASIN/020161622X/ref=nosim/shlomifishhom-20
http://www.shlomifish.org/philosophy/philosophy/advice-for-the-young/#technologies_to_learn
http://www.shlomifish.org/philosophy/philosophy/advice-for-the-young/#technologies_to_learn
http://www.shlomifish.org/philosophy/philosophy/advice-for-the-young/#technologies_to_learn
http://www.joelonsoftware.com/
http://www.joelonsoftware.com/
http://www.joelonsoftware.com/articles/fog0000000069.html
http://www.joelonsoftware.com/articles/fog0000000069.html
http://www.joelonsoftware.com/articles/fog0000000069.html
http://tech.groups.yahoo.com/group/hackers-il/message/3576
http://tech.groups.yahoo.com/group/hackers-il/message/3576
http://tech.groups.yahoo.com/group/hackers-il/message/3576
http://en.wikipedia.org/wiki/Linus_Torvalds
http://en.wikipedia.org/wiki/Linus_Torvalds
http://shlomif.livejournal.com/39215.html
http://shlomif.livejournal.com/39215.html
http://shlomif.livejournal.com/39215.html

Thoughts about the Best
Introductory Language

As Joel points out in the article, most programmers end up saying that the code they are working on is
horrible and that they wish to completely rewrite it if they have the chance, instead of refactoring [http://
www.refactoring.com/] it to make it better.

Furthermore, since reading code is harder than writing it, then it makes sense that programmers who are
good at reading (or refactoring code or enhancing it) are much better programmers, than programmers
who are only good at writing new code. I wish I had a dollar for every time I heard of someone trying to
rewrite an existing functional and relatively bug-free codebase from scratch, just because this codebase was
deemed of too little quality, and that afterwards this rewrite ended up at nothing. These cases practically
dwarf the number of successful rewrites I recall.

To sum up, it will be a good idea to teach first-time programmers how to read real-world code, or the code
written by their co-students, and how to enhance it by extending it, and cleaning it up.

Thanks
Thanks to Pete_I on Freenode, Omer Zak [http://www.zak.co.il/], chromatic [http://www.wgz.org/
chromatic/], Jonathan Scott Duff, Sagiv Barhoom, and others, for reviewing early drafts of this essay and
giving some editorial assistance.

14

http://www.refactoring.com/
http://www.refactoring.com/
http://www.refactoring.com/
http://www.zak.co.il/
http://www.zak.co.il/
http://www.wgz.org/chromatic/
http://www.wgz.org/chromatic/
http://www.wgz.org/chromatic/

	Thoughts about the Best Introductory Language
	Table of Contents
	Introduction
	The Various (Wrong) Approaches to Introductory Programming Languages
	Linda McIver’s Thesis Approach
	The “Structure and Interpretation of Computer Programs” Approach
	The “Teach in C” Approach
	The “First Programming Language Should Make Sure You Write Good Code” Fallacy
	The “It Should Have a Decent IDE” Fallacy
	Teaching several languages simultaneously in an introductory course

	Some useful relations
	A High Level Language Should Come Before C
	Perl/Python/etc. should Come before PHP
	Perl/Python/etc. should Come before Shell
	C should Precede Assembly
	The First Language should be Practical
	Localised Programming Languages should be Avoided
	Java Should be Taught After Perl

	My Verdict
	Perl, Python, or Ruby
	Perl
	Python
	Ruby

	Final Verdict

	Some Types of Teaching
	Conclusion
	Other Good Food for Thought about Teaching
	“Live as if you were to die tomorrow. Learn as if you were to live forever.”
	Three Levels of Learning
	Learn as Many Languages as Possible
	Learning How to Read Code and Enhance Existing Code

	Thanks

