What Makes Software High-Quality?

Shlomi Fish <shl om f @hl om fi sh. org>
Copyright © 2008 Shlomi Fish

Thiswork islicensed under the Creative Commons Attribution 2.5 License (or at your option a
greater version of it).

Revision History

Revision 1675 02 April 2007 shlomif
Forked the template from a previous work and working on it.
Revision 1871 04 May 2008 shlomif
Finalised the first draft. About to receive feedback.
Revision 1872 04 May 2008 shlomif
Fixed many spelling/grammar/etc. problems, trailing whitespace, etc.
Revision 1882 06 May 2008 shlomif

Fixed many spelling, grammar and syntax problems (thanks in part to Omer
Zak). Added some bolds, and id=""s, added the about section, reorganised
the text a bit, and added the note about responsiveness and startup time.
Revision 1884 06 May 2008 shlomif
Changed “a software” to something more idiomatic, and fixed a bad phrasing towards the beginning.
Revision 5218 15 May 2008 shlomif
Forked the document from the first revision, and converted to DocBook-4.5.
Revision 5329 24 May 2008 shlomif
Added the suggestion of speaking about “Why software quality is important”, and the note about
popularity to the introduction. Placed the Intro FCS story in the “Motivation” section. Added
the “organisation” sub-section to the Intro. Added the note about the generic “weight func-
tion”. Added a link to “The Stanford Checker”. Corrected many “a software” instances. Added
the note about how Linux and Windows looked to the Aesthetics. Added the note about low-
quality code and organisational quality to the “good code” section. Added the footnote about
a comprehensive comparison of Freecell solvers. Added the note about solution length and
“other advantages” of fc-solve. Updated the “Thanks” section. Made many other corrections.

Revision 5492 09 June 2008 shlomif
Fixed “manifest” to “is manifested”.
Revision 4859 05 June 2011 shlomif

Convert to Unicode single-quotes and double-quotes.
Abstract

This document will discuss what makes an open source program (and by induction other programs) high-quality. It
will cover the parameters that make software applications high-quality and ways to achieve them.

Table of Contents

g1 [0 ot [' o PPN
o117 o PP
Organisation Of thisS DOCUMENLcouuiiiiicii e e e e e e e e e e aeas
Parameters Of QUAIITYciuuiiiii e
The Program is Available for Downloading or BUyingc.cccoiviiiiiiiiiieiiie e,
The Version Number is Clearly Indicatedcoevviiiiiiiiiiiicie e,
The Source is Available, Preferably under aUsable Licence........cccoveviiviiiieiiiciiin e,

http://creativecommons.org/licenses/by/2.5/

What Makes Software High-Quality?

L 0 Y o < 5
The Program has a HOMEPAOEccvuiiiiiciie e e e s 6
The Program is Easy to Compile, Deploy and Installccooeiiiiiiiiiiii e, 6
The Program Has Packages for Most Common Distributions.............ccoevviiiiiieiiiiccieeeenn, 7
The Program Has Good, Extensive and Usable Documentationc.ccoveevvneviiineeineennnn. 7
[0 o1 Y 7
S = w11 11 Y 8
Backwards Compatibilitycccuiiiiiiii e 8
G0o0d Ways t0 Provide SUPPOIuiiiieii e e e e e e e e e e e e e e e e et e e et e e aa e e aanaes 9
Speed and High PerfOrmanCecouiiiiiiii e e 9
= 13 1= (oSSR 10
100 Tox 11 Lo o [P TPPT 11
Ways to AChIeVe QUAIITYcouviii i e 11
Having Modular, Well-Written Codecc.uiiiiiiiiii e e e 11
F 100 7= =0 = £ PR 12
2T ol =S (= £ TP 12
Frequency Of REIEASEScouuiiii i e 12
G0o0d SOftWare ManagEMENTeiii i e e e e e e e e e e e et e e et e e aaneeeeas 12
Good Social ENgineering SKillScciuniiiiiii e 13
NO BaO POLITICS ...t e e e e e e e e e 13
Good CommMUNICELTON SKITISiiiiiiiieeii e 13
H Y 0 e 13
F N €0 oo I\ o= PP 14
100 Tox 11 Lo o [P 14
Analysis of the Quality of the Various Freecell SOIVErSccccovviiiiiiiiiiiiii e, 14
F g1 7o [0 o [o PSP 14
The ANalySIS IESEI .o o e 15
100 Tox 11 Lo o [P 17
ADOUE THIS DOCUMENT ... iiieiiie ettt ettt e et e et et e e et e e e e et e e e e st e eeeaennas 17
(007 0)/ 1T o1+ 17
ADOUL the AULNOT ... e e e e e e ar s 17
ACKNOWIEAGEMENTSuiiiii i e e e e e e e e e et e e et eeaaaaee 18
Introduction

Why is high quality in software important? Low-quality software applications will require the users or
end-developers to work around their bugs and limitations, write a lot of extra functionality themselves,
and as a result, duplicate a lot of effort and cause a lot of frustration and unhappiness. This is assuming
they don't give up on it soon or right away, and end up looking for something else.

But what makes a popular software application “high-quality”? A high-quality program or library can
be defined as one that is usable as is, that causes very few frustrations, and that requires little if any
modifications or workarounds to get it up-to-speed.

I’m not talking about the application that’s the most hyped, or the fastest, most featureful, or best. Some-
times you can often hear endless rants and Fear, Uncertainty and Doubt (FUD) attacks about it. Often, it
has competing programs that are superior in many respects.

In this essay we'll look at what quality metrics apply to software.

Motivation

How did it occur to me to ponder this question? | am active in the fc-solve-discuss mailing list, which
is dedicated to computerised techniques for solving the Freecell solitaire card game, and for discussing

http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt
http://tech.groups.yahoo.com/group/fc-solve-discuss/
http://www.freecell.org/

What Makes Software High-Quality?

other automated solving and research of Solitaire games. Thismailing list was started after | wrote Freecell
Solver (with alowercase “c” and an uppercase “S"), an open-source solver, which has proven to be quite
popular. However, the mailing list was not restricted to discussing it exclusively, and was joined by many
other Freecell solving experts, researchers and enthusiasts.

Recently, Gary Campbell wrote this message reading:

| think the solver discussion in the Wikipediashould mention that the FCPro solversgive
quite lengthy and virtually unusable solutions. No human wants to follow the several
hundred steps that usually result in order to get at what’ sreally required to solve agiven
layout. If someone wants a solution that can be understood, they want one that is under
100 steps. Thisisamajor contribution and it should be stated. There are alot of “toy”
solvers and only avery few of “industrial strength.” One of the latter is the solver by
Danny Jones. | don't seethat onyour list. Theresults he has gotten from his solver pretty
much put your solver to shame. The more you hype Freecell Solver, the more criticism
you open yourself up to.

Unfortunately, it’s hard for me to determine what “industrial strength”, “enterprise grade” and other such
buzzwords are. But I'll try to define high quality here, and try to show when a program is high quality.

Organisation of this Document

| initially wanted to give some examples for open-source software that | considered to be of exceptional
high-quality, but | decided against it.

That’ s because their exceptional quality isamatter of taste, and it may provoke too much criticism against
this essay asawhole. Thus, I'll just give some examples, possibly accompanied by screenshots, of places
where one program does something better than a different program. | won’t even going to imply that the
latter isin fact lower-quality in al possible respects.

Thisarticleiswritten from my point-of-view as a devel oper of “ Free and Open Source Software”, and will
focus on open-source and pseudo-open-source software. However, alot of what | say is more universal.

Parameters of Quality

This section will cover the parameters that make software high quality. However, it will not cover the
meansto makeit so. Theseinclude such non-essential things as having good, modular code "@ing-good_code
good marketing, or having good automated tests. These things are definitely important, but will be covered
only later, and alot of popular, high-quality software lacks some of them, while its competition may do
better in this respect.

One note that isin order is that these are many parametersin a generic “weight function”, and not a
list of requirements which must all be satisfied. -/

having_good_code \y/nato Shouldn't high quality software have a good codebase. Surprisingly no. What would you prefer: having a very modular
codebase that does something pretty useless like outputting the string “Hello World” or having a large codebase of relatively low quality with a
large amount of useful functionality and relatively few bugs?

| would certainly prefer the other alternative. That's because | know | can always refactor that codebase, either by large scale refactoring or by
continuous refactoring or even “Just-in-Time" refactoring, only to add anew feature.

Licence por example, | mention later that the more liberal the source licence of a program, the higher quality it is. Obvioudly, alot of non- “Free
and Open Source Software” or even binary-only applications are high-quality too. But, the use of such software is still more limited than an open-

source one, so it would be of lesser quality than an identical software that is open-source.

3

http://fc-solve.shlomifish.org/
http://fc-solve.shlomifish.org/
http://tech.groups.yahoo.com/group/fc-solve-discuss/message/741
http://en.wikipedia.org/wiki/Free_and_open_source_software
http://www.joelonsoftware.com/articles/fog0000000348.html
http://en.wikipedia.org/wiki/FOSS
http://en.wikipedia.org/wiki/FOSS

What Makes Software High-Quality?

The Program is Available for Downloading or Buying

That may seem like a silly thing to say, but you'll be surprised how many times people get it wrong. How
many times have you seen web-sites of software that claim that the new version of the program (or even
the first) is currently under work, will change the world, but is not available yet? How many times have
you heard of web-sites that are not live yet, and refuse to tell people exactly what they are about?

Alternatively, in the case of the “ Stanford checker”, which is a sophisticated tool for static code analysis,
it is not available for download, but instead is a service provided by its parent company.

A program should be available in the wild somehow (for downloading or at least buying) so people can
use it, play with it, become impressed or unimpressed, report bugs, and ask for new features. Otherwise
it'sjust in-house software or at most a service, that is not adequate for most needs.

In the “ Cathedral and the Bazaar”, Eric Raymond recommends to “release early and release often”. Make
frequent, incremental releases, so your project won't stagnate. If you take your project and work on it
yourself for too long, people will give up.

If you have a new idea for a program, make sure you implement some basic but adequate functionality,
and then release it so people can play with it, and learn about it. Most successful open-source projects,
that have been open-source since their inception, have started this way: the Linux kernel, gcc, vim, perl,
CPython. If you look at the earliest versions of all of them, you'll find that they were very limited if not
downright hideous, but now they are often among the best of breed.

The Version Number is Clearly Indicated

Which version of your software are you using? How can you tell? It's not unusual to come to a page
where the link to the archive does not contain aversion number, nor isit clearly indicated anywhere. What
happens if this number was bumped to indicate a bug fix. How do you indicate it then?

A good software always indicates its version number in the archive file name, the opening directory file
name, has a - - ver si on command-line flag, and the version mentioned in the about dialogue if there
isone.

The Source is Available, Preferably under a Usable Li-
cence

Public availability of the source is agreat advantage for a program to have. Many people will usually not
take alook at it otherwise, for many reasons, someideological but some also practical. '%°% without the
source, and without it being under aproper licence, the softwarewill not become part of most distributions
of Linux, the BSD operating systems, etc.

If you just say that your software “is copyright by John Doe. All Rights Reserved”, then it may arguably
induce aninability to study itsinternals (including to fix bugs or add features) without being restricted by a
non-compete clause, or even that its use or re-distribution is restricted. Some software ship with extremely

Similarly, libraries or programs that are distributed under the relatively restrictive GNU General Public Licence (GPL) (and which are considered
open-source and usable by most Linux distributions) cannot be used in many common situations, and so would be of lesser quality than programs
under a more permissive licence.

deology A sgming there was ever atrue ideology that was not also practical.

The way | seeit, an ideology (and ethics in general) are a strategy that aims to make a person lead a better, happier life. If it isn’t, then it's just
adestructive dogma, or just plain stubbornness.

http://en.wikipedia.org/wiki/Coverity
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
http://en.wikipedia.org/wiki/GNU_General_Public_License

What Makes Software High-Quality?

long, complicated (and often not entirely enforceable) End-User-Licence-Agreements (EULAS) that no-
one reads or cares to understand.

As a result, many people will find a program with a licence that is not 100% Free and Open Source
Software - unacceptable. To be truly useful the application aso needs be GPL compatible, and naturally
usable public-domain licences such as the modified BSD licence, the MIT X11 licence, or even pure
Public Domain source code®“®c9man are even better for their ability to be sub-licensed and re-used. This
is while licenses that allow incorporation but not sub-licensing, like the Lesser General Public License
(LGPL) are somewhere in between.

While some programs on Linux have become popular despite being under non-optimal licences, many
Linux distributions pride themselves that the core system consists of “100% free software”. Most software
that became non-open-source, was eventually forked or got into disuse, or else suffered from alot of bad
publicity.

Asaresult, a high-quality software has alicence that is the most usable in the context of its common use
cases. These licences are doubly-important for freely-distributed UNIX software.

It “Just Works”

This is a meta-parameter for quality. When people say that something “just works’, they mean that you
don't have to be concerned about getting it up and running, not spend too much timeto learn it, not worry
about it destroying data, or have to wonder how to troubleshoot problems with it.

A program that just worksisthe holy grail of high-quality software. In practice this means several things:

1. A“justworks’ software also doesn’t have any show-stopping bugs. Whileit may still have some bugs,
it should mostly function correctly.

2. It has most of the features people want and does not lack essential ones. For example, GNU Arch, an
old and now mostly unused version control program, did not work on Windows 32-bit, while Subver-
sion, adifferent and popular alternative, has anative port. Moreover, Mercurial, adifferent alternative,
cannot keep empty directories (or trees of directories not containing files) in the repository. This may
make both Mercurial and GNU Arch a no-starter for many uses.

Tendrais the most prominent aternative C and C++ compiler to GCC, but it's hardly as advanced as
GCC is, does not have all of GCC's features and extensions, and is not usable as a replacement for
GCC for most needs. As such, it is hardly ever used.

3. A "just works’ software also has good usability. What it meansisthat it behaves like people expect it
to. The Emacs-based editors, which are an alternative to Vim, do not invoke the menus upon pressing
“Alt+F’, *Alt+E”, etc. which is the Windows convention to them.

Furthermore, when putting a single-line prompt, the prompt cannot be dismissed with either Ctrl+C or
ESC, whilein Vim, both keys dismiss the prompt. The key combination to dismissit is not written any-
whereonthescreenand | won'ttell youwhat itis. According to User Interface Design for Programmers,
“A user-interface is well-designed when the program behaves exactly how the user thought it would”.

public-domain ;g ng 4 pure-pulblic-domain licensing termsfor your softwareis problematic because not all countrieshaveaconcept of “public-domain’,
similar to that of the United States, because many people misinterpret it, and because it is not clear whether software can be licensed under the
public-domain to begin with. (And other such issues).

While guite alot of important programs has been rel eased under the public domain, and they are doing quite fine, they may have some problematic
legal implications.

For these reasons, | now prefer the MIT X 11 Licence for software that | originated instead of the “public domain”.

5

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.dwheeler.com/essays/gpl-compatible.html
http://www.tendra.org/
http://www.joelonsoftware.com/uibook/chapters/fog0000000057.html
http://freshmeat.net/browse/197/

What Makes Software High-Quality?

While some people may be led to believe thisis not applicable to terminal applications, TTY applica
tions, command line applications, or even Application Programming Interfaces (APIs) - it still holds
there. Onething that made melike gvim (the Graphical front-end to vim) wasthat it could be configured
to behave much like aWindows editor. | gradually learnt more and more vim paradigms, but found the
intuitive usahility a great advantage. But | could never quite get used to Emacs.

The Program has a Homepage

Most software applications and libraries of high-quality have a homepage which introduces them, has
download information, giveslinks, and provides a starting point to receive more information. And no - a/
proj ect/ mypr ogr ani page on Source Forge or a different software hub - is much more sub-optimal
than that, and leaves a bad impression.

The Program is Easy to Compile, Deploy and Install

A high-quality program iseasy to compile, deploy and install. It builds out of the box with minimal hassles.
There are several common standard building procedures for such software:

1. The common standard building procedure using the GNU Autotools is . / configure --pre-
fi x=$PREFI X ; nmake ; nake install.

2. There are now some more modern alternatives to the GNU Autotools, which may also prove useful.

3. CPAN Perl distributions have asimilar per| Makefi | e. PL procedure or more recently also one
using per | Bui | d. PL which tendsto be less quirky (see Module-Build).

Generally, one usualy installs them using the CPAN.pm or CPANPLUS.pm interfaces to CPAN, or
preferably using a wrapper that converts every CPAN distribution to a native (or otherwise easy to
remove) native system package.

4. Python packages have the standard set up. py procedure which can also generate Linux RPMs and
other native packages.

5. There are similar building procedures for most other technologies out there.

However, it’ snot uncommon to find aprogram that failsto build even on GNU/Linux on an x86 computer,
which is the most common platform for development. Or the case of the gmail email server, which has
along and quirky build process. It reportedly fails to compile on modern Linuxes, and someone | know
who tried to build it said that it did not work after following all the steps.

One thing that detracts from a piece of software being high-quality is alarge amount of dependencies.

If we take Plagger, a web-feed mix-and-match framework in Perl (not unlike Y ahoo Pipes, but predates
it), then its Plagger distribution on CPAN contains all of its plug-insinside, and as a result requires “ half
of CPAN" including such obscure modules, as those for handling Chinese and Japanese dates.

Popular programs like GCC, perl 5, Vim, Subversion and Emacs have very few dependencies and they are
normally included in the package, if necessary to build the system. They are al written in very portable
ANSI C and POSIX and have been successfully deployed on all modern UNIX-flavours, on Microsoft
Windows and on many other more obscure systems.

While reducing the number of dependencies often means re-inventing wheels, it still increases the quality
of your software. I’m not saying a program cannot be high-quality if it hasalarge amount of dependencies,
but it’s still agood ideato keep it to a minimum.

http://sourceforge.net/
http://sourceware.org/autobook/
http://www.shlomifish.org/open-source/resources/software-tools/
http://www.cpan.org/
http://cpan.uwinnipeg.ca/dist/Module-Build
http://www.python.org/
http://www.shlomifish.org/open-source/anti/qmail/
http://plagger.org/
http://pipes.yahoo.com/
http://search.cpan.org/dist/Plagger/

What Makes Software High-Quality?

The Program Has Packages for Most Common Distribu-

tions

A good program has packages for most common distributions, or such packages can be easily prepared.

Lack of such packages will require installing it from source, using generic binary packages, or other
workaroundsthat are harder than asimple command to install the package from the package manager, and
may prevent it from being maintained into the future.

A good example for how this can become wrong is the gmail SMTP server, before it became public-do-
main. The gmail copyright terms prevented distributing modified sources, or binary packages. Asaresult,
the distributions that supported it packaged it as a source package, with an irregular build-process. Since
the gmail package had its own unconventional idea of directory structure, some of the distributions had
to extensively patch it. Thisin turn prevented more mainstream patches from being applied correctly to
correct the many limitations that gmail had, or accumulated over the years due to its lack of maintenance.

The Program Has Good, Extensive and Usable Docu-
mentation

If your GUI program is simple and well-designed, then you normally don’'t need good documentation.
However, acommand line program, alibrary, etc. does need one, or el se the user won’t know what to do.

There are many types of documentation: the --help flag, the man page, the README/USAGE/INSTALL
files, full-fledged in-depth guides, documents about the philosophy, wikis, etc. If the program is well-
designed, then the user should be ableto get up and running quickly. An exceptionto thisarevarioushighly
speciaised programs, such as 3-D graphics programs, or CAD programs, that require some extensive
learning.

If we take Subversion as an example, then it has a full Book online, severa tutorials, an svn hel p
command which provides help to all the other commands, and alot of help can be found using a Google
search. GNU Arch, on the other hand, only had one wordy tutorial, that | didn’t want to read. Most of
the other tutorials people wrote, became misleading or non-functional as the program broke backwards
compatibility.

Vim hasan excellent internal documentation system. It’ sthefirst thing you are directed see when invoking
it. It has a comprehensive tutorial, a full manual, and the ability to search for many keywords, with alot
of redundancy. As aresult, one can easily become better and better with vim or gvim, albeit many people
can happily use it with only the bare essentials.

Emacs help on the other hand is confusing, dis-organised, lacking in explanation and idiosyncratic. It
doesn’t get invoked when pressing “F1”, isnot directed to when the program starts, and most people cannot
make heads nor tails of it. There is a short Emacs tutorial, but it isn’'t as extensive as Vim’'s. Nor does it
explain how to configure Emacsto behave in a better way than its default, in which it behaves completely
differently to what people who are used to Windows-like conventions or vim-like conventions expect.

Portability

Itistempting to believethat by writing aprogram for one platform, you can gain most of your market-share.
However, people are using many platforms on many different CPU architectures. Windows 32-bit/64-bit
on Intel machines, Itanium, or x86-64; Linux on a multitude of platforms; BSD systems (NetBSD, Free-
BSD, OpenBSD and others) on many architectures as well; Mac OS X; Sun Solaris (now also OpenSo-
laris), and more obscure (but still popular) Unix-clones like AIX, HP-UX, IRIX, SCO UNIX, Tru64 (for-

http://www.shlomifish.org/open-source/anti/qmail/
http://freshmeat.net/articles/view/519/
http://svnbook.red-bean.com/

What Makes Software High-Quality?

merly Digital Unix), etc. And to say nothing of more exotic, non-UNIX, non-Microsoft operating systems
like Novell Netware, Digital Corp.s's VMS or OpenVMS, IBM’s VM/CMS or 0S/390 (MVS), BeOS,
AmigaOS, Mac OS 9 or earlier, PAAmMOS, VxWorks, etc. etc.

As agenera rule, the only thing that runs on top of all of these systems (in the modern “All the world is
aVAX.” world) is a C-based program or something that is C-hosted. "V@!iké\10st good programs are
portable to at least Windows and most UNIXes and potentially portable to other platforms.

For example, Subversion has made it a high priority to work properly on Windows. On the other hand
many of its early aternatives, especially GNU Arch, could not work there due to their architectures. As
a result, many mixed shops, Windows-only shops, or companies where some devel opers wanted to use
Windows as their desktop OS, could not use Arch. So Arch has seen avery small penetration.

The bootstrapping ANSI C compiler of gcc for example, iswritten in very portable K&R C, so it can be
compiled by any C compiler. Later on, this compiler can be used to compile most of the rest of the GCC
compilers.

Compare that to many compilers for other languages that are written in the same language. For example,
GHC - The Glasgow Haskell Compiler iswritten in itself, and requires arelatively recent version of itself
to compileitself. So you need to bootstrap severa intermediate compilersto build it.

Security

A high-quality program is secure. It has a relatively small number of security issues, and bugs are fixed
there as soon as possible.

Some people believe that security is the most important aspect of software, but it's only one factor that
affects its quality. For example, once | was talking with a certain UNIX expert, and he argued that the
Win32 CreateProcess() system call was superior to the UNIX combination of Fork() and Exec(), just be-
cause it made some bugs harder to code. However, some multitasking paradigms are not possible, without
the fork() system call, which is not present in the Win32 API at al, and needs to be emulated (at a high
run-time cost) or replaced with thread-based multitasking, whichisnot identical. Finally, itisstill possible
to get fork()+exec() right, and there’' s a spawn() abstraction on many modern UNIXes.

While | don’'t mean you shouldn’t pay attention to security, or keep good security practicesin mind when
coding, I'm saying that it shouldn’t slow down the process by much, or prevent too many exciting features
from being added, or cause the development to stagnate.

Backwards Compatibility

A high-quality program maintains as much backward compatibility with its older versions as possible.
Some backward compatibility, like relying on bugs or other misbehaviours (“ bug-to-bug compatibility”),
is probably too extreme to consider. But users would like to upgrade the software and expect al of their
programs to just continue to work.

A bad example for software that does not maintain backwards compatibility is PHP, where every primary
digit breaks the compatibility with the older one: PHP 4 was not compatible with PHP 3 and PHP 5 was

non-vaxlike | fylly aware that before C-based UNIX and UNIX-like systems became dominant there were some more exotic architectures that
could not run C comfortably. Prime examples for them are the PDP-10 and the Lisp machines.

However, such more “unconventional” architectures are now dead, and no CPU architecture developer in their right mind would want to create a
CPU that won't be able to run C and C-based UNIX-based or UNIX-like operating systems such as Linux. (Unlessit's probably arelatively niche
micro-processor for embedded systems).

Lisp, and similar higher-level languages, run on modern UNIX-based OSes very well, so there' s not a big problem there.

8

http://en.wikipedia.org/wiki/C_(programming_language)#K.26R_C
http://www.haskell.org/ghc/
http://msdn2.microsoft.com/en-us/library/ms682425.aspx
http://en.wikipedia.org/wiki/Fork-exec
http://en.wikipedia.org/wiki/Backward_compatibility
http://www.php.net/
http://en.wikipedia.org/wiki/PDP-10
http://en.wikipedia.org/wiki/Lisp_machine

What Makes Software High-Quality?

not compatible with PHP 4. Furthermore, sometimes existing user-land code was broken in minor-digit
releases. As such, maintaining PHP code into the future is a very costly process, especialy if you want
it to work with arange of versions.

On the other hand, the perl5 devel opers have been maintaining backwards compatibility between 5.000,
5.001, 5.002 up to 5.6.x, 5.8.x and now 5.10.x. Therefore, one can normally expect older scripts to just
work. perl5 can also run alot of Perl 4 code and below, and Perl 4 code can be ported to modern versions of
perl5 with relative ease. While sometimes scripts, programs or modules were broken (due to lack of * bug-
to-bug compatibility™), or became slower, upgrading to a new version of Perl isnormally straightforward.

Good Ways to Provide Support

A piece of high-quality software has good ways for its users to receive support. Some examples for ways
to do that are:

1. A Mailing List.

2. IRC (Internet Relay Chats) Channels.

3. An email address for questions.

4. Web Forums.

5. Wikis.

Without good ways to receive support, users will be unnecessarily frustrated when they encounter a prob-

lem, which cannot be answered by the documentation. Refer to Joel Spolsky’s* Seven Stepsto Remarkable
Customer Service” for more information on how to give good support.

Speed and High Performance

The reason | mentioned this quality parameter so late is because it was what Mr. Campbell stressed in his
argument about “Industrial Strength” Freecell solvers. So | wanted to show that there are other important
parameters beside it. However, raw performance is important, too.

If aprogram istoo slow, or generates sub-optimal results, most people will be reluctant to useit and find
using it daunting. They will either give up waiting for it to finish, or get distracted. If the output results
of the program are too sub-optimal (assuming there's a scale to their optimality), then they will probably
look for different alternatives.

Asaresult, it isimportant that your software will run quickly, and will yield good results. There are many
ways to make code write faster, and covering them hereis out of the scope of this article.

A good example for how such optimisations can make such a huge difference are the memory optimisa-
tions done to Firefox between Firefox 2 and Firefox 3, which greatly improved its performance, memory
consumption, and reduced the number of memory leaks. It should be noted that often, reducing memory
consumption can yield better performance because of a smaller number of cache misses, process memory
swapping, and other such factors.

There are several related aspects of performance, that also affect the general quality and usability of a
program. One of them isresponsiveness, which is often manifested when people complain that the program
is “sluggish”. Java programs are especially notorious for being such, for some reason, while programs
written in Perl and Python are more responsive and feel snappy, despite the fact that their backends are
generaly slower than the Java virtual machine.

http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://www.joelonsoftware.com/articles/customerservice.html
http://www.joelonsoftware.com/articles/customerservice.html
http://blog.pavlov.net/2008/03/11/firefox-3-memory-usage/
http://blog.pavlov.net/2008/03/11/firefox-3-memory-usage/
http://www.perl.org/
http://www.python.org/

What Makes Software High-Quality?

A tangential aspect is that of startup time. Many programs require or have required a long time to start,
which also makes using them frustrating, even if they are later responsive and quick.

Aesthetics

A good program (or web site) or other resource is aesthetically pleasing. Aestheticsin this context, does
not necessarily mean very “artsy” or having a breath-taking style. But we may have run into software
(usually one for internal use or one of those very costly, bad-quality, niche, software) that seemed very
ugly and badly designed, with a horrible user-interface, etc.

Different types of applications, and those running on different platforms, have different conventions for
what is considered aesthetic. In The Art of UNIX Programming, Eric Raymond makes the case for the
“Silence is Golden” principle of designing UNIX command-line interfaces. Basically, a command line
program should output as little as possible. Now observe the behaviour of aptitude (aunified interface for
package management) on Ubuntu Gutsy Gibbon, when trying to install a non-existing package name:

root @hl om f - deskt op: / hone/ shl omi f# aptitude install this-does-not-exist
Readi ng package lists... Done
Bui | di ng dependency tree

Readi ng state information... Done
Readi ng extended state information
Initializing package states... Done

Bui | di ng tag dat abase... Done
Couldn’t find any package whose name or description matched "thi s-does-not-exist”
The foll owi ng packages have been kept back:
firefox firefox-gnone-support
0 packages upgraded, O newly installed, 0 to renmove and 2 not upgraded.
Need to get OB of archives. After unpacking OB will be used.
Readi ng package lists... Done
Bui | di ng dependency tree

Readi ng state information... Done
Readi ng extended state information
Initializing package states... Done

Bui | di ng tag dat abase... Done

15 lines of output, and only one of them in the middle is the informative one. Why is al this information
aconcern of mine, especialy given the fact that they are all given in the same monotonous default colour.

On the other hand, here’s what urpmi (a similar package management interface for Mandriva) says on
Mandriva Cooker:

[root @el avivl ~]# urpm this-does-not-exist
No package naned thi s-does-not-exi st
[root @el avivl ~]#

Exactly one line and it’s informative. While aptitude certainly has its merits, its verbosity still makes it
much more painful to use than urpmi, when | have to work on Ubuntu.

10

http://catb.org/~esr/writings/taoup/
http://catb.org/~esr/writings/taoup/html/ch11s09.html
http://catb.org/~esr/writings/taoup/html/ch11s09.html

What Makes Software High-Quality?

Back to more visual aesthetics, one of the reasons that made me want to use Linux more than Windows 95’
or 98’ was the fact that its desktops were truly themable and could be made to look much better without
effort. If | got tired of the same look, | could easily switch. While Windows XP shipped with a more
attractive theme, and also had some proprietary and non-gratistheming software, Linux supplied all of that
out-of-the-box and with a more attractive theme. The effects supplied by the Linux 3-D desktops, which
have put the 9-milliard Dollar effects of Vistato shame, have convinced some people to install Linux on
their computer after seeing them.

Conclusion

There are probably several parameters for software quality that I'm missing. However, the point is that
one should evaluate the general quality of the software based on many parameters and not exclusively
“security” or “speed” or whatever.

For example, many proponents of BSD operating systemsclaim that the various BSDsare superior to Linux
because they are more secure, or because they are (supposedly) faster or are easier to manage, because
their licence is less problematic than the GPL, etc. However, they forget that Linux has some advantages
like being more popular (and so one can get support more easily), or like the fact that its kernel supports
much more hardware, or that it has better vendor acceptance, and because more software is guaranteed to
run with less problems on Linux than on the BSDs, ''"-bsd-soft

I’m not saying the BSDs are completely inferior to Linux, just that Linux still has some cultural and
technical advantages. Quality in softwareisnot alinear metric, becauseit is affected by many parameters.
If you're a software developer, you should aim to get as many of the parameters | mentioned right.

Ways to Achieve Quality

Now that we've covered the elements that make programs high-quality here’s a non-exhaustive list of
ways to actually achieve it. None of them are absolutely necessary for achieving the quality, but they
certainly help alot.

Many people often confuse them with quality. “ This software has God-damn awful code, so it’s a pile-of-
crap.” Well, what do the users care how bad the code is, aslong as it is functional, has all the necessary
features, and is (mostly) bug-free? It simportant not to confuse quality with the ways to achieveit.

The aim of this sectionisto briefly cover as many measures for achieving good quality as possible.

Having Modular, Well-Written Code

The more modular a project’s code is, the easier it is to change it, understand it and extend it, and the
faster development will take. Refactoring is the name given to the process used to transform code from
sub-optimal and “ugly”, but still mostly functional and bug-free code, to a code that is equally functional
but more modular and clean. See the Joel on Software excellent article “Rub a dub dub” for some of the
motivation and practices of good refactoring instead of throwing away the code and restarting from scratch.

A reviewer of an early version of this article told me about an early and relatively large PHP code of her
that was badly written, relatively buggy and yet proved to be popular among some of her clients, who have
deployed it on many hosts and won't effectively upgrade it. So she still has to maintain it, even though
she'd rather not recommend it. She claimed that this is an indication that such low-quality in code, is a
criterion of low-quality.

linux-bst-oft N aturally, thisis a problem with the fact that most devel opers are developing on Linux (mostly x86), don't test it on other Unix flavours,
and are too careless or unaware to write their programs portably enough.

However, it's still aquality parameter, because it still affects the way you' re using the operating system.

11

http://youtube.com/watch?v=xC5uEe5OzNQ
http://www.refactoring.com/
http://www.joelonsoftware.com/articles/fog0000000348.html

What Makes Software High-Quality?

She has a point in the fact that usually badly-written or non-modular code results in more external low-
quality factors such as bugs, security problems and lack of extensibility. However, even if the code was
extremely well-written it islikely that it would need to be maintained, extended, and corrected. And if the
clients in question don't have or don’t want a good way to pull changes from a central place, or install
updates properly, it's aprocedural and organisational problem.

Organisational quality deserves its own separate article (or arguably book, web-site, or even more than
one book), but external software quality (much lessinternal one), is not a substitute for it. Please refer to
apartial list | prepared on adifferent article, and my software “gurus’ links on my home-site’slinks' list.

Automated Tests

Automated tests aim to test the behaviour of code automatically, instead of manual testing. The classical
example for them isthat if we wish to write afunction called add(i, j) that aimsto add two integers
then we should check that add(2, 3) == 5,thatadd(2, 0) == 2,thatadd(0, 2) == 2,that
add(5, -2) == 3,thatadd(10, -24) == -14, ¢etc.

Then we can run all the testsand if any of them failed, we can fix them. Then after we write or modify the
code, we can test using them again to see if there are any regressions.

Writing automated tests before we write the actual code, or before we fix a bug, and accumulating such
tests (the so-called “ Test-driven development” paradigm), is a good practice which helps maintain high-
quality code, and facilitates refactoring and makes it safer.

Beta Testers

If you have beta testers for the code, or publish development versions frequently, you can get a lot of
feedback for various different platforms and configurations your code is running on. These beta-testers
can run the automated tests and also use the beta-code for their own testing or even production.

Frequency of Releases

The more frequent your releases are, the more people can test your code, and the more they can upgrade
to the latest version, and the quicker bugs that disturb your users are fixed, etc.

Naturally, there are advantages for slower release cycles, or for predictable release cycles like GNOME
2.x has. | won’t voice a definite opinion for which is the best methodology, but such a decision should
be taken into consideration.

Good Software Management

There are several sources, online and offline, explaining good software management for “ shrinkwrap”
software (open-source, commercial or other distributed) and for other types of software development (em-
bedded, in-house, etc.), from which good advice can be taken for how to best run a software project. While
they are sometimes contradictory, and often false, they still make a good read and are thought-provoking.

Here are some links:

1. Eric Raymond'’s “ The Cathedral and the Bazaar” series

2. The Joel on Software site

3. Paul Graham’s Essays (on various topics)

4. Extreme Programming

12

http://www.shlomifish.org/philosophy/philosophy/advice-for-the-young/#recommended_writings
http://www.shlomifish.org/links.html#software_gurus
http://en.wikipedia.org/wiki/Test-driven_development
http://www.gnome.org/
http://www.gnome.org/
http://www.catb.org/~esr/writings/cathedral-bazaar/
http://www.joelonsoftware.com/
http://www.paulgraham.com/
http://www.extremeprogramming.org/

What Makes Software High-Quality?

Good

Social Engineering Skills

It certainly helpsfor the project’ s communities to have good social engineering skills. From tactfulness, to
humour, to controlling one’ stemper, to saying “Thanks’ and congratulating people for their contribution,
to timely applying patches and fixing bugs - all of these makes contributing to a project and using the
program more fun and less frustrating.

Often, social engineering should be made part of the design of the software, or the web-sites dedicated to
it. For example, it took me several iterations of having to fill the same project form in the GNU Savannah
software-hub, only for it to be rejected, and me having to follow the process again. Despite the fact the
admins were polite, it still was annoying.

Eventually, they implemented a way to save previous project submissions and to re-send them, so future
userswon't become as frustrated as | did.

Again, some projects have succeeded despite the fact they had, or even still have, bad social engineering.
But adopting a good software engineering policy can certainly help alot.

No Bad Politics

Bad politicsinasoftwareprojectisalot like subjectivity, it can never befully eliminated, but we should still
striveto reduceit to the minimum.. If bad political processes become common in aproject, then important
features are dropped, bugs are left unfixed, patches are stalled, external projects gets stalled or are killed,
people become frustrated or angry and possibly leave the project - and the project may risk forking.

So it's a good idea to keep bad politics at bay and to a minimum. How to do that is out of the scope of
the document, but it’s usually up to the leaders to keep it so and maintain a good policy that will make as
few people as possible frustrated and will not flabbergast external contributors. And naturally, for open-
source and similar projects, afork is often an option in this case, or in other similar cases.

Good Communication Skills

Hype

A project leader and other participants should have good communication skills: very good English; pleas-
antness and tact; good phrasing, proper grammar, syntax, phrasing and capitalisation; clear writing; pa-
tience and tolerance; etc. If they don't, then the project may encounter problems as people will find the
project’ s devel opers hard to understand or tolerate, and, thus, hard to work with.

Despite common belief | believe that the less hype and general noise thereis regarding a software project,
the better off it is. For example, as Paul Graham notes regarding Java:

[Java] has been so energetically hyped. Real standards don't have to be promoted. No
one had to promote C, or Unix, or HTML. A real standard tendsto be already established
by the time most people hear about it. On the hacker radar screen, Perl isas big as Java,
or bigger, just on the strength of its own merits.

In fact, | can argue that if your project receives a lot of negative hype, then it is an indication that it is
successful. Perl, for example, has received (and still receives) alot of criticism, and Perl aficionados often
get tired of constantly hearing or seeing the same repetitive and tired arguments by itsopponents. However,
the perl 5 interpreter isin good shape, it has many automated tests (much more than most other competing
dynamic languages), an active community, many modules on CPAN (the Comprehensive Perl Archive
Network) with alot of third-party , open-source functionality, and relatively few critical bugs. It is till
heavily actively used and has many fans.

13

http://savannah.gnu.org/
http://savannah.gnu.org/
http://shlomif.livejournal.com/52439.html
http://shlomif.livejournal.com/52439.html
http://www.paulgraham.com/javacover.html
http://perl-begin.org/learn/myth-dispelling/

What Makes Software High-Quality?

Similar criticism has been voiced against the Subversion version control system, Linux, etc. Onething one
can notice about such highly-criticised projectsisthat they tend not to be bothered by it too much. Rather,
what they say isthat “If you want to use acompeting project, | won't stop you. It probably is good. It may
be better in some respects. | like my own project and that’s what I’ m used to using and use.”

Thisisby al meanstheright policy of “hyping” to adopt, if you want your project to be successful based

on its own merits. Some projects compete for the same niche, without voicing too much hype against each
other or for them, and thisis a better indication that they are all healthy.

A Good Name

Finally, a project should have a good name. One example for a project with an awful name is CVSNT.
There are two problems with the name:

1. It isbased on CV'S, which most people have ran into its limitations, is considered passé and unloved,
and people would rather avoid.

2. The“NT” part impliesit only runs on Windows-NT, which is both misleading and undesirable.

On the other hand, the competing project “ Subversion” has amuch better name, sinceit has nothing to do
with CVS, or Windows NT, and sinceit is an English word and sounds cool.

Some projects are successful despite being badly named, while some have avery cool name, but languish.
Still, agood name helpsalot.

Also consider what Linus Torvalds said about Linux and 386BSD (half jokingly):

No. That's it. The cool name, that is. We worked very hard on creating a name that
would appeal to the majority of people, and it certainly paid off: thousands of people
are using linux just to be able to say “0S/2? Hah. I’ ve got Linux. What a cool name”.
386BSD made the mistake of putting alot of numbers and weird abbreviations into the
name, and is scaring away alot of people just because it sounds too technical.

Conclusion

Entire books (and web-sites) werefilled with the various measures to achieve software quality, and what |
described here was just a sample of it. The point isthat these are not aspects of quality by themselves, but
rather measures that help. None of them is a required or adequate condition for the success of a project,
but the more are implemented the easier, faster, and more enjoying working on the project will be.

Analysis of the Quality of the Various Freecell
Solvers

Introduction

Asyou recall, Gary Campbell’s comment provided the mativation for my investigation into what makes
a project high-quality and which quality-increasing-measures are not elements of quality by themselves.
And since Freecell Solver has been my pet project, and as I’ m still interested in techniques for solving
Solitaire, I'd like to conclude this essay by analysing the various solvers according to the parameters |
described. The natural caveat is that | may be somewhat biased due to the fact that | authored a solver
of my own.

14

http://subversion.tigris.org/
http://www.march-hare.com/cvspro/
http://groups.google.com/group/comp.unix.pc-clone.32bit/msg/80bb74847934edc7
http://fc-solve.shlomifish.org/

What Makes Software High-Quality?

| was not so sure including this section is a good idea, but | feel the article is incomplete without it. Feel
freeto skip it, in case you are not that interested in it. F&-SComp

The Analysis ltself

As is not uncommon in many software niches, some Freecell solvers are not commonly available for
downloading or even for buying. For example, Bill Raymond’ s solver (named “Cat in the Sack”) which he
has been talking about extensively, has not been released yet, under any licensing terms. Similarly, Danny
A. Jones has kept his solver (mentioned in the introduction) for himself, and has not released it to the wild
in either source or binary forms.

As such, the utility of such solversisheavily reduced. For once, they cannot be used as integrated solvers
of Solitaire apps, because no one is going to wait for an email to the author to be sent, and the author to
reply with the solution. Also, many researchers won't trust solutions given by them without the ability to
inspect the source code.

Most other solvers are available for free download, and many are accompanied with the source, most
probably under an open-source licence.

Gary Campbell’s Solver iswritten in 8086 Assembly, with some 32-bit extensions, and only runson DOS
and DOS-compatible platforms. The assembly iscompiled using a self-hosting macro assembler written by
Campbell. The Assembly source code of the solver or the assembler are not available. As such modifying
the code of the executable may prove to be problematic.

It istempting to think that x86 and DOS are a very low common denominator, but that is not always the
case. Imagine that you are writing a Freecell game for an embedded device running anon-x86 architecture
such as ARM or PowerPC. In that case, in order to run Campbell’s solver, you'll need to embed an x86-
and-DOS emulator (such as DOSBox) inside the device, which will complicate things, consume alot of
memory, and slow things down. On the other, an ANSI C-based solver, such as Freecell Solver, or Tom
Holroyd' s Patsolve, can be easily made to compile and run there with few if any modifications. So they
would be preferable.

Similarly, when writing portable programs for the various Unix flavours and other POSI X -capable or

ANSI C-capable operating-systems, then writing code in x86 Assembly exclusively will make it a non-
Starter. Portions of Assembly

Some Freecell solvers also don’t build out of the box. For example, typing nake inside the patsolve
distribution yields the following output:

shl om : ~/ pat sol ve- 3. 0% nmmke

FC-S-Comp Thjs section is not meant as a comprehensive comparison of the Freecell solvers. The latter has yet to be written and would be much more
difficult than what I’'m doing here. It would be complicated by factors such as:

1

4.

Some solvers are binary-only and only run on DOS or Windows. Open-source command-line ones may probably perform better on Linux or
other Unix systems.

. Some of them are not publicly availablein any form.

. Some of them can only solve Freecell, while others are more generic and can solve other Solitaire variants. (which in turn may hurt their
performance.)

They differ in their solving algorithms. For example, some use atomic (= one-card) moves, some move entire sequences at a time, and some
are based on meta-moves.

Portions of Assembly |y ghme cases, the developers of portable software maintain versions of parts of the code in Assembly of selected architectures,
while keeping more portable versions written in C or C++. Thisis done to optimise some parts for common CPU architectures.

15

http://tech.groups.yahoo.com/group/fc-solve-discuss/message/158
http://fc-solve.shlomifish.org/links.html#other_solvers
http://www.numin8r.us/programs/
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/PowerPC
http://www.dosbox.com/
http://en.wikipedia.org/wiki/Unix

What Makes Software High-Quality?

make cl ean

nmake[1]: Entering directory “/hone/shl om /patsolve-3.0
rm-f patsolve *.o0 paramc paramh core wi n .depend
nmake[1]: Leaving directory "/ hone/shlom /patsolve-3.0
touch . depend

param py param dat

make: param py: Conmand not found

make: *** [param h] Error 127

Thisisrelatively easy tofix, but still frustrating. Freecell Solver on the other hand, has been fully converted
to the GNU Autotools, and can be built as a static and shared library (a.k.aDLL). It aso has some built-
in proof-of-concept, but still usable, command line utilities that link against it.

Freecell Solver has very good usability: it mostly respects the Unix conventions and best practices, it can
start solving from any arbitrary Solitaire board position given to it as input, and has kept command line
interface usability in mind. Campbell’s solver on the other hand, as of this writing, does not operate on a
standard input/standard output manner, is poorly documented, and is counter-intuitive for someone who
is used to Unix conventions (and most DOS conventions). I’m not even sure it can accept any arbitrary
board asinput, but | may be wrong.

Regarding the homepage of the solver: the Freecell Solver homepage has many pages, anavigation menu,
a common look-and-feel and many links and information. On the other hand, Patsolve’s homepage is
nothing but a link in Tom Holroyd's software archive, which can easily be missed. Gary Campbell’'s
homepage for his solver has a Baroque design and quite alot of marketing-speak. And it’s only one page
with no anchors or a navigation menu, and very few links. Most other solvers don't fare better than that,
and certainly worse than my own.

Licensing, anecessary, but important, evil. The Freecell Solver’'s ANSI C source is distributed under the
Public Domain licence, which allows virtually any use, including linking, modifying and sublicensing
under any different licence by a third party.”"-'®ENSE On the other hand, Patsolve is distributed under
the GPL licence which while usable is considerably more restrictive than Public Domain, or BSD-style
licences. Thisisalso the case for this Common Lisp solver by Kevin Atkinson and Shari Holstege. Many
other solvers, including Campbell’ sare binary-only, “ All Rights Reserved”, which makesthem acompl ete
no-starter for most open-source applications out there. Furthermore, many non-open-source applications
will prefer to use a Public Domain solver, rather than paying royalties or risking “ copyrights’ and source
availability problems.

Freecell Solver (FCS) is extensively documented, and even its online help is helpful and usable by itself.
The other solvers are much less documented, but arguably they also have much fewer options and features
than Freecell Solver does.

Which brings usto the features - Freecell Solver hasalong list of features, and I’ m not aware of any other
solver with so many. Especially of noteisthat it can solve many other Solitaire variants, including Simple
Simon, of which FCSis probably the only solver capable of solving.

Most of the solvers out there are fast, but some are more than others. Normally, for solving an individual
game on the command-line, almost any solver will do, and the only cases where such speed matters more

PD-LICENSE A5 noted earlier, a Public Domain non-licence has some problems, which may make the software problematic for many corporations
and in some jurisdictions. However, | don't have problem in exempting the licence of the Freecell Solver code (at least not the Public Domain code
that | fully originated), from the Public Domain, including under the MIT X11 Licence, assuming thisis necessary.

I"'m aso considering relicensing Freecell Solver and other older software of mine under the MIT X11 licence, or possibly having a dual-Public
Domain and MIT X11 licensing terms (which seems somewhat silly, but may be a good idea.)

16

http://www.catb.org/~esr/writings/taoup/
http://fc-solve.shlomifish.org/
http://members.tripod.com/professor_tom/archives/
http://www.numin8r.us/programs/
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://kevin.atkinson.dhs.org/freecell/
http://freshmeat.net/articles/view/519/
http://fc-solve.shlomifish.org/features.html
http://en.wikipedia.org/wiki/Simple_Simon_(solitaire)
http://en.wikipedia.org/wiki/Simple_Simon_(solitaire)

What Makes Software High-Quality?

isfor Solitaire research, and for analysing large sets of different games. (see the Freecell FAQ for more
information).

In hisoriginal message, Mr. Campbell claimed that the Freecell Pro solvers (Freecell Solver, Patsolve and
the solver that originated from Don Woods) generated long and unusabl e solutions. That has not been my
experience with Freecell Solver in some of its (practically infinite) configurations. Using the so-called
“good-intentions” configuration | typically get solutionsthat are less than 200 moves. It ishighly possible
thisis not the default in Freecell Pro. But like | said, there are many different parameters for quality than
just speed and solution-length. Another fact worth of noting isthat a beta-tester who tried out some of the
Freecell Solver solutionsin Freecell Pro, said that he found them to be very “creative” and interesting.

Freecell Solver has some other advantages: it is capable of being fully instantiated, as it stores everything
in an “instance” C-struct, while using global variables only for constants (and not using static variables).
This makes doing parallelised testing using mutli-threading much easier. It also has namespace-purity in
the sensethat all variables start withthef r eecel | _sol ver _ prefix. Moreover, FCShas awell-defined
and stable API, which is not well-documented, but should be easy-to-use.

Part of the APl is a parser for alist of command-line-like strings, which allow for configuring without
making many standalone function calls.

Conclusion

All things considered, | still feel that Freecell Solver is probably the best quality Solitaire solver out there.
While it still has a lot of room for improvement, the rest of its competition have much bigger issues, or
have not been made available (yet or ever).

Several factors contributed for its success: the fact that | announced many releases on Freshmeat.net, that
| received alot of input from my users and co-devel opers, that | was determined to constantly improve it
and work on it, and that | worked on creating and maintaining a good web-site and documentation.

While most of the contributions of code | received were limited, the input from the users of the software
proved to be crucia for its prosperity. Like | noted earlier, | lost interest in working on it (at least tem-
porarily), but still maintain it, and feel that it is good enough asit is.

I hope this document, and similar resources it referenced will help you in working on your software, and
improving its quality for the benefit of your users and you.

Happy Hacking!
About This Document
Copyrights

Thiswork is licensed under the Creative Commons Attribution 2.5 License (or at your option a greater
version of it). The CC-Attribution isalmost Public Domain except for arequirement to make an attribution
to the original author.

It was written by Shlomi Fish who & so holds the copyrights.

About the Author

Shlomi Fishwasborninlsragl in 1977, and haslived theremost of hislife. Heisauser, devel oper, advocate
and activist of Open Source Software. His single greatest contribution so far in this area has been Freecell

17

http://www.solitairelaboratory.com/fcfaq.html
http://www.rrhistorical.com/rrdata/Fcpro65/
http://fc-solve.shlomifish.org/to-do.html
http://freshmeat.net/
http://creativecommons.org/licenses/by/2.5/
http://www.shlomifish.org/
http://fc-solve.shlomifish.org/

What Makes Software High-Quality?

Solver, a Public Domain Library for solving games of Freecell and other types of Solitaire. However, he
also initiated some other projects and made important contributions to projects he did not initiate some
of them very large scale. Recently, most of his contribution were perl distributions he uploaded to CPAN
under his username.

Fish’ swork on Freecell Solver and other open source projects, and thefact heisinterested in many software
management techniques has led him to write alarge number of articles, and weblog entries which describe
his unique views as a developer of mostly portable software.

Acknowledgements

Thanksto Mr. Gary Campbell, the author of “FCELL.COM” whose original message provided the inspi-
ration for this article. Thanksto Omer Zak, who went over an early draft of thisarticle and supplied many
useful comments. Thanks to Jacinta Richardson of Perl Training Australia, who gave some very useful
comments on the first and second revisions, and to “Limbic_Region”, for noting an omission from it.
Thanks to many people on the IRC (= Internet Relay Chat) who have read the article and commented, and
chose not to be explicitly credited.

Finally, thanksto all the past and present people who helped me with Freecell Solver, and with the rest of
my Free and Open Source Software (FOSS) endeavours.

18

http://fc-solve.shlomifish.org/
http://www.shlomifish.org/open-source/projects/
http://www.shlomifish.org/open-source/contributions/
http://cpan.uwinnipeg.ca/~shlomif
http://www.shlomifish.org/philosophy/
http://www.zak.co.il/
http://perltraining.com.au/

	What Makes Software High-Quality?
	Table of Contents
	Introduction
	Motivation
	Organisation of this Document

	Parameters of Quality
	The Program is Available for Downloading or Buying
	The Version Number is Clearly Indicated
	The Source is Available, Preferably under a Usable Licence
	It “Just Works”
	The Program has a Homepage
	The Program is Easy to Compile, Deploy and Install
	The Program Has Packages for Most Common Distributions
	The Program Has Good, Extensive and Usable Documentation
	Portability
	Security
	Backwards Compatibility
	Good Ways to Provide Support
	Speed and High Performance
	Aesthetics
	Conclusion

	Ways to Achieve Quality
	Having Modular, Well-Written Code
	Automated Tests
	Beta Testers
	Frequency of Releases
	Good Software Management
	Good Social Engineering Skills
	No Bad Politics
	Good Communication Skills
	Hype
	A Good Name
	Conclusion

	Analysis of the Quality of the Various Freecell Solvers
	Introduction
	The Analysis Itself
	Conclusion

	About This Document
	Copyrights
	About the Author
	Acknowledgements

